Your browser doesn't support javascript.
loading
Direct Generation and Detection of Quantum Correlated Photons with 3.2 um Wavelength Spacing.
Sua, Yong Meng; Fan, Heng; Shahverdi, Amin; Chen, Jia-Yang; Huang, Yu-Ping.
Afiliación
  • Sua YM; Department of Physics, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA.
  • Fan H; Center for Quantum Science and Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA.
  • Shahverdi A; Department of Physics, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA.
  • Chen JY; Center for Quantum Science and Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA.
  • Huang YP; Department of Physics, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA.
Sci Rep ; 7(1): 17494, 2017 12 13.
Article en En | MEDLINE | ID: mdl-29235534
Quantum correlated, highly non-degenerate photons can be used to synthesize disparate quantum nodes and link quantum processing over incompatible wavelengths, thereby constructing heterogeneous quantum systems for otherwise unattainable superior performance. Existing techniques for correlated photons have been concentrated in the visible and near-IR domains, with the photon pairs residing within one micron. Here, we demonstrate direct generation and detection of high-purity photon pairs at room temperature with 3.2 um wavelength spacing, one at 780 nm to match the rubidium D2 line, and the other at 3950 nm that falls in a transparent, low-scattering optical window for free space applications. The pairs are created via spontaneous parametric downconversion in a lithium niobate waveguide with specially designed geometry and periodic poling. The 780 nm photons are measured with a silicon avalanche photodiode, and the 3950 nm photons are measured with an upconversion photon detector using a similar waveguide, which attains 34% internal conversion efficiency. Quantum correlation measurement yields a high coincidence-to-accidental ratio of 54, which indicates the strong correlation with the extremely non-degenerate photon pairs. Our system bridges existing quantum technology to the challenging mid-IR regime, where unprecedented applications are expected in quantum metrology and sensing, quantum communications, medical diagnostics, and so on.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: Sci Rep Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: Sci Rep Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido