Your browser doesn't support javascript.
loading
Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides.
Gent, William E; Lim, Kipil; Liang, Yufeng; Li, Qinghao; Barnes, Taylor; Ahn, Sung-Jin; Stone, Kevin H; McIntire, Mitchell; Hong, Jihyun; Song, Jay Hyok; Li, Yiyang; Mehta, Apurva; Ermon, Stefano; Tyliszczak, Tolek; Kilcoyne, David; Vine, David; Park, Jin-Hwan; Doo, Seok-Kwang; Toney, Michael F; Yang, Wanli; Prendergast, David; Chueh, William C.
Afiliación
  • Gent WE; Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA, 94305, USA.
  • Lim K; The Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
  • Liang Y; Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA.
  • Li Q; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
  • Barnes T; The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
  • Ahn SJ; The Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
  • Stone KH; School of Physics, National Key Laboratory of Crystal Materials, Shandong University, 27 Shanda South road, Jinan, 250100, China.
  • McIntire M; The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
  • Hong J; Energy Lab, Samsung Advanced Institute of Technology, 130, Samsung-ro, Yeongtong-gu Suwon-si, Gyeonggi-do, 16678, South Korea.
  • Song JH; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
  • Li Y; Department of Computer Science, Stanford University, 353 Serra Mall, Stanford, CA, 94305, USA.
  • Mehta A; Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA.
  • Ermon S; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
  • Tyliszczak T; Energy1lab, Samsung SDI, 130, Samsung-ro, Yeongtong-gu Suwon-si, Gyeonggi-do, 16678, South Korea.
  • Kilcoyne D; Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA.
  • Vine D; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
  • Park JH; Department of Computer Science, Stanford University, 353 Serra Mall, Stanford, CA, 94305, USA.
  • Doo SK; The Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
  • Toney MF; The Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
  • Yang W; The Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
  • Prendergast D; Energy Lab, Samsung Advanced Institute of Technology, 130, Samsung-ro, Yeongtong-gu Suwon-si, Gyeonggi-do, 16678, South Korea.
  • Chueh WC; Energy Lab, Samsung Advanced Institute of Technology, 130, Samsung-ro, Yeongtong-gu Suwon-si, Gyeonggi-do, 16678, South Korea.
Nat Commun ; 8(1): 2091, 2017 12 12.
Article en En | MEDLINE | ID: mdl-29233965
Lithium-rich layered transition metal oxide positive electrodes offer access to anion redox at high potentials, thereby promising high energy densities for lithium-ion batteries. However, anion redox is also associated with several unfavorable electrochemical properties, such as open-circuit voltage hysteresis. Here we reveal that in Li1.17-x Ni0.21Co0.08Mn0.54O2, these properties arise from a strong coupling between anion redox and cation migration. We combine various X-ray spectroscopic, microscopic, and structural probes to show that partially reversible transition metal migration decreases the potential of the bulk oxygen redox couple by > 1 V, leading to a reordering in the anionic and cationic redox potentials during cycling. First principles calculations show that this is due to the drastic change in the local oxygen coordination environments associated with the transition metal migration. We propose that this mechanism is involved in stabilizing the oxygen redox couple, which we observe spectroscopically to persist for 500 charge/discharge cycles.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido