Your browser doesn't support javascript.
loading
Breath analysis by gas chromatography-mass spectrometry and electronic nose to screen for pleural mesothelioma: a cross-sectional case-control study.
Lamote, Kevin; Brinkman, Paul; Vandermeersch, Lore; Vynck, Matthijs; Sterk, Peter J; Van Langenhove, Herman; Thas, Olivier; Van Cleemput, Joris; Nackaerts, Kristiaan; van Meerbeeck, Jan P.
Afiliación
  • Lamote K; Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.
  • Brinkman P; Department of Internal Medicine, Ghent University, Ghent, Belgium.
  • Vandermeersch L; Department of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
  • Vynck M; Department of Sustainable Organic Chemistry and Technology, EnVOC Research Group, Ghent University, Ghent, Belgium.
  • Sterk PJ; Department of Mathematical Modelling, Statistics and Bio-Informatics, Ghent University, Ghent, Belgium.
  • Van Langenhove H; Department of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
  • Thas O; Department of Sustainable Organic Chemistry and Technology, EnVOC Research Group, Ghent University, Ghent, Belgium.
  • Van Cleemput J; Department of Mathematical Modelling, Statistics and Bio-Informatics, Ghent University, Ghent, Belgium.
  • Nackaerts K; Occupational Health Service, Eternit N.V., Kapelle-op-den-Bos, Belgium.
  • van Meerbeeck JP; Department of Respiratory Diseases, KU Leuven, University Hospitals Leuven, Leuven, Belgium.
Oncotarget ; 8(53): 91593-91602, 2017 Oct 31.
Article en En | MEDLINE | ID: mdl-29207669
RATIONALE: Malignant pleural mesothelioma (MPM) is mainly caused by previous exposure to asbestos fibers and has a poor prognosis. Due to a long latency period between exposure and diagnosis, MPM incidence is expected to peak between 2020-2025. Screening of asbestos-exposed individuals is believed to improve early detection and hence, MPM management. Recent developments focus on breath analysis for screening since breath contains volatile organic compounds (VOCs) which reflect the cell's metabolism. OBJECTIVES: The goal of this cross-sectional, case-control study is to identify VOCs in exhaled breath of MPM patients with gas chromatography-mass spectrometry (GC-MS) and to assess breath analysis to screen for MPM using an electronic nose (eNose). METHODS: Breath and background samples were taken from 64 subjects: 16 healthy controls (HC), 19 asymptomatic former asbestos-exposed (AEx) individuals, 15 patients with benign asbestos-related diseases (ARD) and 14 MPM patients. Samples were analyzed with both GC-MS and eNose. RESULTS: Using GC-MS, AEx individuals were discriminated from MPM patients with 97% accuracy, with diethyl ether, limonene, nonanal, methylcyclopentane and cyclohexane as important VOCs. This was validated by eNose analysis. MPM patients were discriminated from AEx+ARD participants by GC-MS and eNose with 94% and 74% accuracy, respectively. The sensitivity, specificity, positive and negative predictive values were 100%, 91%, 82%, 100% for GC-MS and 82%, 55%, 82%, 55% for eNose, respectively. CONCLUSION: This study shows accurate discrimination of patients with MPM from asymptomatic asbestos-exposed persons at risk by GC-MS and eNose analysis of exhaled VOCs and provides proof-of-principle of breath analysis for MPM screening.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Observational_studies / Prevalence_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Idioma: En Revista: Oncotarget Año: 2017 Tipo del documento: Article País de afiliación: Bélgica Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Observational_studies / Prevalence_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Idioma: En Revista: Oncotarget Año: 2017 Tipo del documento: Article País de afiliación: Bélgica Pais de publicación: Estados Unidos