Your browser doesn't support javascript.
loading
[Big data approaches in psychiatry: examples in depression research]. / Big-Data-Ansätze in der Psychiatrie: Beispiele aus der Depressionsforschung.
Bzdok, D; Karrer, T M; Habel, U; Schneider, F.
Afiliación
  • Bzdok D; Klinik für Psychiatrie, Psychotherapie und Psychosomatik, Uniklinik RWTH Aachen, Pauwelstraße 30, 52074, Aachen, Deutschland. dbzdok@ukaachen.de.
  • Karrer TM; Institut für Neurowissenschaften und Medizin: JARA Institute Brain Structure Function Relationship (INM 10), Forschungszentrum Jülich GmbH, Jülich, Deutschland. dbzdok@ukaachen.de.
  • Habel U; Parietal team, INRIA, Neurospin, bat 145, CEA Saclay, 91191, Gif-sur-Yvette, Frankreich. dbzdok@ukaachen.de.
  • Schneider F; Klinik für Psychiatrie, Psychotherapie und Psychosomatik, Uniklinik RWTH Aachen, Pauwelstraße 30, 52074, Aachen, Deutschland.
Nervenarzt ; 89(8): 869-874, 2018 Aug.
Article en De | MEDLINE | ID: mdl-29188348
BACKGROUND: The exploration and therapy of depression is aggravated by heterogeneous etiological mechanisms and various comorbidities. With the growing trend towards big data in psychiatry, research and therapy can increasingly target the individual patient. This novel objective requires special methods of analysis. OBJECTIVE: The possibilities and challenges of the application of big data approaches in depression are examined in closer detail. MATERIAL AND METHODS: Examples are given to illustrate the possibilities of big data approaches in depression research. Modern machine learning methods are compared to traditional statistical methods in terms of their potential in applications to depression. RESULTS: Big data approaches are particularly suited to the analysis of detailed observational data, the prediction of single data points or several clinical variables and the identification of endophenotypes. A current challenge lies in the transfer of results into the clinical treatment of patients with depression. CONCLUSION: Big data approaches enable biological subtypes in depression to be identified and predictions in individual patients to be made. They have enormous potential for prevention, early diagnosis, treatment choice and prognosis of depression as well as for treatment development.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Psiquiatría / Investigación / Depresión / Macrodatos Tipo de estudio: Prognostic_studies / Screening_studies Límite: Humans Idioma: De Revista: Nervenarzt Año: 2018 Tipo del documento: Article Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Psiquiatría / Investigación / Depresión / Macrodatos Tipo de estudio: Prognostic_studies / Screening_studies Límite: Humans Idioma: De Revista: Nervenarzt Año: 2018 Tipo del documento: Article Pais de publicación: Alemania