Your browser doesn't support javascript.
loading
Extracting Adverse Drug Events from Text using Human Advice.
Odom, Phillip; Bangera, Vishal; Khot, Tushar; Page, David; Natarajan, Sriraam.
Afiliación
  • Odom P; Indiana University Bloomington.
  • Bangera V; Indiana University Bloomington.
  • Khot T; Allen Institute of AI.
  • Page D; University of Madison-Wisconsin.
  • Natarajan S; Indiana University Bloomington.
Article en En | MEDLINE | ID: mdl-29119145
Adverse drug events (ADEs) are a major concern and point of emphasis for the medical profession, government, and society in general. When methods extract ADEs from observational data, there is a necessity to evaluate these methods. More precisely, it is important to know what is already known in the literature. Consequently, we employ a novel relation extraction technique based on a recently developed probabilistic logic learning algorithm that exploits human advice. We demonstrate on a standard adverse drug events data base that the proposed approach can successfully extract existing adverse drug events from limited amount of training data and compares favorably with state-of-the-art probabilistic logic learning methods.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Artif Intell Med Conf Artif Intell Med (2005-) Año: 2015 Tipo del documento: Article Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Artif Intell Med Conf Artif Intell Med (2005-) Año: 2015 Tipo del documento: Article Pais de publicación: Alemania