Population differentiation or species formation across the Indian and the Pacific Oceans? An example from the brooding marine hydrozoan Macrorhynchia phoenicea.
Ecol Evol
; 7(20): 8170-8186, 2017 10.
Article
en En
| MEDLINE
| ID: mdl-29075441
Assessing population connectivity is necessary to construct effective marine protected areas. This connectivity depends, among other parameters, inherently on species dispersal capacities. Isolation by distance (IBD) is one of the main modes of differentiation in marine species, above all in species presenting low dispersal abilities. This study reports the genetic structuring in the tropical hydrozoan Macrorhynchia phoenicea α (sensu Postaire et al., 2016a), a brooding species, from 30 sampling sites in the Western Indian Ocean and the Tropical Southwestern Pacific, using 15 microsatellite loci. At the local scale, genet dispersal relied on asexual propagation at short distance, which was not found at larger scales. Considering one representative per clone, significant positive FIS values (from -0.327*** to 0.411***) were found within almost all sites. Gene flow was extremely low at all spatial scales, among sites within islands (<10 km distance) and among islands (100 to >11,000 km distance), with significant pairwise FST values (from 0.035*** to 0.645***). A general pattern of IBD was found at the Indo-Pacific scale, but also within ecoregions in the Western Indian Ocean province. Clustering and network analyses identified each island as a potential independent population, while analysis of molecular variance indicated that population genetic differentiation was significant at small (within island) and intermediate (among islands within province) spatial scales. As shown by this species, a brooding life cycle might be corollary of the high population differentiation found in some coastal marine species, thwarting regular dispersal at distances more than a few kilometers and probably leading to high cryptic diversity, each island housing independent evolutionary lineages.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Ecol Evol
Año:
2017
Tipo del documento:
Article
Pais de publicación:
Reino Unido