Your browser doesn't support javascript.
loading
Entropy factor for randomness quantification in neuronal data.
Rajdl, K; Lansky, P; Kostal, L.
Afiliación
  • Rajdl K; Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic. Electronic address: rajdlk@mail.muni.cz.
  • Lansky P; Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
  • Kostal L; Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
Neural Netw ; 95: 57-65, 2017 Nov.
Article en En | MEDLINE | ID: mdl-28888132
A novel measure of neural spike train randomness, an entropy factor, is proposed. It is based on the Shannon entropy of the number of spikes in a time window and can be seen as an analogy to the Fano factor. Theoretical properties of the new measure are studied for equilibrium renewal processes and further illustrated on gamma and inverse Gaussian probability distributions of interspike intervals. Finally, the entropy factor is evaluated from the experimental records of spontaneous activity in macaque primary visual cortex and compared to its theoretical behavior deduced for the renewal process models. Both theoretical and experimental results show substantial differences between the Fano and entropy factors. Rather paradoxically, an increase in the variability of spike count is often accompanied by an increase of its predictability, as evidenced by the entropy factor.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Entropía / Modelos Neurológicos / Neuronas Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Neural Netw Asunto de la revista: NEUROLOGIA Año: 2017 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Entropía / Modelos Neurológicos / Neuronas Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Neural Netw Asunto de la revista: NEUROLOGIA Año: 2017 Tipo del documento: Article Pais de publicación: Estados Unidos