Your browser doesn't support javascript.
loading
Quantitative Visualization of Dynamic Tracer Transportation in the Extracellular Space of Deep Brain Regions Using Tracer-Based Magnetic Resonance Imaging.
Hou, Jin; Wang, Wei; Quan, Xianyue; Liang, Wen; Li, Zhiming; Chen, Deji; Han, Hongbin.
Afiliación
  • Hou J; Department of Radiology, The 2nd Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (mainland).
  • Wang W; Department of Radiology and Peking Magnetic Resonance Imaging Technology Research Laboratory, 3rd Hospital of Peking University, Beijing, China (mainland).
  • Quan X; Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland).
  • Liang W; Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland).
  • Li Z; Department of Radiology, The 2nd Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (mainland).
  • Chen D; Department of Radiology, The 2nd Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (mainland).
  • Han H; Department of Radiology and Peking Magnetic Resonance Imaging Technology Research Laboratory, 3rd Hospital of Peking University, Beijing, China (mainland).
Med Sci Monit ; 23: 4260-4268, 2017 Sep 03.
Article en En | MEDLINE | ID: mdl-28866708
BACKGROUND This study assessed an innovative tracer-based magnetic resonance imaging (MRI) system to visualize the dynamic transportation of tracers in regions of deep brain extracellular space (ECS) and to measure transportation ability and ECS structure. MATERIAL AND METHODS Gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA) was the chosen tracer and was injected into the caudate nucleus and thalamus. Real-time dynamic transportation of Gd-DTPA in ECS was observed and the results were verified by laser scanning confocal microscopy. Using Transwell assay across the blood-brain barrier, a modified diffusion equation was further simplified. Effective diffusion coefficient D* and tortuosity λ were calculated. Immunohistochemical staining and Western blot analysis were used to investigate the extracellular matrix contributing to ECS structure. RESULTS Tracers injected into the caudate nucleus were transported to the ipsilateral frontal and temporal cortices away from the injection points, while both of them injected into the thalamus were only distributed on site. Although the caudate nucleus was closely adjacent to the thalamus, tracer transportation between partitions was not observed. In addition, D* and the λ showed statistically significant differences between partitions. ECS was shown to be a physiologically partitioned system, and its division is characterized by the unique distribution territory and transportation ability of substances located in it. Versican and Tenascin R are possible contributors to the tortuosity of ECS. CONCLUSIONS Tracer-based MRI will improve our understanding of the brain microenvironment, improve the techniques for local delivery of drugs, and highlight brain tissue engineering fields in the future.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Espacio Extracelular Límite: Animals País/Región como asunto: Asia Idioma: En Revista: Med Sci Monit Asunto de la revista: MEDICINA Año: 2017 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Espacio Extracelular Límite: Animals País/Región como asunto: Asia Idioma: En Revista: Med Sci Monit Asunto de la revista: MEDICINA Año: 2017 Tipo del documento: Article Pais de publicación: Estados Unidos