Ligand Noninnocence in Iron Corroles: Insights from Optical and X-ray Absorption Spectroscopies and Electrochemical Redox Potentials.
Chemistry
; 23(60): 15098-15106, 2017 Oct 26.
Article
en En
| MEDLINE
| ID: mdl-28845891
Two new series of iron meso-tris(para-X-phenyl)corrole (TpXPC) complexes, Fe[TpXPC]Ph and Fe[TpXPC]Tol, in which X=CF3 , H, Me, and OMe, and Tol=p-methylphenyl (p-tolyl), have been synthesized, allowing a multitechnique electronic-structural comparison with the corresponding FeCl, FeNO, and Fe2 (µ-O) TpXPC derivatives. Optical spectroscopy revealed that the Soret maxima of the FePh and FeTol series are insensitive to the phenyl para substituent, consistent with the presumed innocence of the corrole ligand in these compounds. Accordingly, we may be increasingly confident in the ability of the substituent effect criterion to serve as a probe of corrole noninnocence. Furthermore, four complexes-Fe[TPC]Cl, Fe[TPC](NO), {Fe[TPC]}2 O, and Fe[TPC]Ph-were selected for a detailed XANES investigation of the question of ligand noninnocence. The intensity-weighted average energy (IWAE) positions were found to exhibit rather modest variations (0.8â
eV over the series of corroles). The integrated Fe-K pre-edge intensities, on the other hand, vary considerably, with a 2.5â
fold increase for Fe[TPC]Ph relative to Fe[TPC]Cl and Fe[TPC](NO). Given the approximately C4v local symmetry of the Fe in all the complexes, the large increase in intensity for Fe[TPC]Ph may be attributed to a higher number of 3d holes, consistent with an expected FeIV -like description, in contrast to Fe[TPC]Cl and Fe[TPC](NO), in which the Fe is thought to be FeIII -like. These results afford strong validation of XANES as a probe of ligand noninnocence in metallocorroles. Electrochemical redox potentials, on the other hand, were found not to afford a simple probe of ligand noninnocence in Fe corroles.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Chemistry
Asunto de la revista:
QUIMICA
Año:
2017
Tipo del documento:
Article
País de afiliación:
Noruega
Pais de publicación:
Alemania