Highly selective adsorption of CO over CO2 in a Cu(I)-chelated porous organic polymer.
J Hazard Mater
; 341: 321-327, 2018 Jan 05.
Article
en En
| MEDLINE
| ID: mdl-28800566
Cu(I) species were successfully chelated to nitrogen atoms in a nitrogen-rich porous organic polymer (SNW-1) by mixing with a CuCl solution (Scheme 1). Although pristine SNW-1 adsorbs CO2 better than CO, Cu(I)-incorporated SNW-1 (nCu(I)@SNW-1) shows selective CO adsorption over CO2 because of the π-complexation of CO with Cu(I). To the best of our knowledge, this is the first CO/CO2 selectivity observed for POP-based materials. 1.3Cu(I)@SNW-1 exhibits high CO/CO2 selectivity (23) at 1bar and a large CO working capacity (0.6mmol/g) at 0.1-1bar. Moreover, the breakthrough and thermogravimetric experiments show that 1.3Cu(I)@SNW-1 can effectively separate CO from CO2 under dynamic mixture conditions and can be easily regenerated under mild regeneration conditions without heating the column. Furthermore, 1.3Cu(I)@SNW-1 exhibited a good stability under exposure to atmospheric air for 3h or 9h. These results suggest that chelating Cu(I) species to a nitrogen-rich porous organic polymer can be an efficient strategy to separate and recover CO from CO/CO2 mixtures.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
J Hazard Mater
Asunto de la revista:
SAUDE AMBIENTAL
Año:
2018
Tipo del documento:
Article
Pais de publicación:
Países Bajos