Your browser doesn't support javascript.
loading
Microfluidic-based Synthesis of Covalent Organic Frameworks (COFs): A Tool for Continuous Production of COF Fibers and Direct Printing on a Surface.
Abrishamkar, Afshin; Rodríguez-San-Miguel, David; Rodríguez Navarro, Jorge Andrés; Rodriguez-Trujillo, Romen; Amabilino, David B; Mas-Ballesté, Ruben; Zamora, Félix; deMello, Andrew J; Puigmarti-Luis, Josep.
Afiliación
  • Abrishamkar A; Institute of Chemical and Bioengineering, Department of Chemistry and Applied Bioscience, ETH Zurich.
  • Rodríguez-San-Miguel D; Departamento de Química Inorgánica, Universidad Autónoma de Madrid.
  • Rodríguez Navarro JA; Departamento de Química Inorgánica, Universidad de Granada.
  • Rodriguez-Trujillo R; Institut de Ciència de Materials de Barcelona (ICMAB-CSIC).
  • Amabilino DB; School of Chemistry, University of Nottingham.
  • Mas-Ballesté R; Departamento de Química Inorgánica, Universidad Autónoma de Madrid; ruben.mas@uam.es.
  • Zamora F; Departamento de Química Inorgánica, Universidad Autónoma de Madrid; Condensed Matter Physics Center (IFMAC), Universidad Autónoma de Madrid; Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia); felix.zamora@uam.es.
  • deMello AJ; Institute of Chemical and Bioengineering, Department of Chemistry and Applied Bioscience, ETH Zurich.
  • Puigmarti-Luis J; Institute of Chemical and Bioengineering, Department of Chemistry and Applied Bioscience, ETH Zurich; josep.puigmarti@chem.ethz.ch.
J Vis Exp ; (125)2017 07 10.
Article en En | MEDLINE | ID: mdl-28715375
Covalent Organic Frameworks (COFs) are a class of porous covalent materials which are frequently synthesized as unprocessable crystalline powders. The first COF was reported in 2005 with much effort centered on the establishment of new synthetic routes for its preparation. To date, most available synthetic methods for COF synthesis are based on bulk mixing under solvothermal conditions. Therefore, there is increasing interest in developing systematic protocols for COF synthesis that provide for fine control over reaction conditions and improve COF processability on surfaces, which is essential for their use in practical applications. Herein, we present a novel microfluidic-based method for COF synthesis where the reaction between two constituent building blocks, 1,3,5-benzenetricarbaldehyde (BTCA) and 1,3,5-tris(4-aminophenyl)benzene (TAPB), takes place under controlled diffusion conditions and at room temperature. Using such an approach yields sponge-like, crystalline fibers of a COF material, hereafter called MF-COF. The mechanical properties of MF-COF and the dynamic nature of the approach allow the continuous production of MF-COF fibers and their direct printing onto surfaces. The general method opens new potential applications requiring advanced printing of 2D or 3D COF structures on flexible or rigid surfaces.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Compuestos Orgánicos / Microfluídica / Estructuras Metalorgánicas Tipo de estudio: Guideline Idioma: En Revista: J Vis Exp Año: 2017 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Compuestos Orgánicos / Microfluídica / Estructuras Metalorgánicas Tipo de estudio: Guideline Idioma: En Revista: J Vis Exp Año: 2017 Tipo del documento: Article Pais de publicación: Estados Unidos