Your browser doesn't support javascript.
loading
Computational tools help improve protein stability but with a solubility tradeoff.
Broom, Aron; Jacobi, Zachary; Trainor, Kyle; Meiering, Elizabeth M.
Afiliación
  • Broom A; From the Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
  • Jacobi Z; From the Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
  • Trainor K; From the Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
J Biol Chem ; 292(35): 14349-14361, 2017 09 01.
Article en En | MEDLINE | ID: mdl-28710274
Accurately predicting changes in protein stability upon amino acid substitution is a much sought after goal. Destabilizing mutations are often implicated in disease, whereas stabilizing mutations are of great value for industrial and therapeutic biotechnology. Increasing protein stability is an especially challenging task, with random substitution yielding stabilizing mutations in only ∼2% of cases. To overcome this bottleneck, computational tools that aim to predict the effect of mutations have been developed; however, achieving accuracy and consistency remains challenging. Here, we combined 11 freely available tools into a meta-predictor (meieringlab.uwaterloo.ca/stabilitypredict/). Validation against ∼600 experimental mutations indicated that our meta-predictor has improved performance over any of the individual tools. The meta-predictor was then used to recommend 10 mutations in a previously designed protein of moderate thermodynamic stability, ThreeFoil. Experimental characterization showed that four mutations increased protein stability and could be amplified through ThreeFoil's structural symmetry to yield several multiple mutants with >2-kcal/mol stabilization. By avoiding residues within functional ties, we could maintain ThreeFoil's glycan-binding capacity. Despite successfully achieving substantial stabilization, however, almost all mutations decreased protein solubility, the most common cause of protein design failure. Examination of the 600-mutation data set revealed that stabilizing mutations on the protein surface tend to increase hydrophobicity and that the individual tools favor this approach to gain stability. Thus, whereas currently available tools can increase protein stability and combining them into a meta-predictor yields enhanced reliability, improvements to the potentials/force fields underlying these tools are needed to avoid gaining protein stability at the cost of solubility.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas Recombinantes / Ingeniería de Proteínas / Modelos Moleculares / Mutación Puntual / Biología Computacional Tipo de estudio: Prognostic_studies Idioma: En Revista: J Biol Chem Año: 2017 Tipo del documento: Article País de afiliación: Canadá Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas Recombinantes / Ingeniería de Proteínas / Modelos Moleculares / Mutación Puntual / Biología Computacional Tipo de estudio: Prognostic_studies Idioma: En Revista: J Biol Chem Año: 2017 Tipo del documento: Article País de afiliación: Canadá Pais de publicación: Estados Unidos