Your browser doesn't support javascript.
loading
The role of inorganic nitrogen in successful formation of granular biofilms for wastewater treatment that support cyanobacteria and bacteria.
Stauch-White, Kristie; Srinivasan, Varun N; Camilla Kuo-Dahab, W; Park, Chul; Butler, Caitlyn S.
Afiliación
  • Stauch-White K; Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, 01003, USA.
  • Srinivasan VN; Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, 01003, USA.
  • Camilla Kuo-Dahab W; Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, 01003, USA.
  • Park C; Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, 01003, USA.
  • Butler CS; Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, 01003, USA. cbutler@ecs.umass.edu.
AMB Express ; 7(1): 146, 2017 Dec.
Article en En | MEDLINE | ID: mdl-28697582
Recently, the use of phototrophs for wastewater treatment has been revisited because of new approaches to separate them from effluent streams. One manifestation uses oxygenic photogranules (OPGs) which are dense, easily-settleable granular biofilms of cyanobacteria, which surrounding populations of heterotrophs, autotrophs, and microalgae. OPGs can remove COD and nitrogenous compounds without external aeration. To better grow and maintain biomass in the proposed wastewater process, this study seeks to understand the factors that contribute to successful granulation. Availability of initial inorganic nitrogen, particularly ammonium, was associated with successful cultivation of OPGs. In the first days of granulation, a decrease in ammonium coupled with an increase in a cyanobacterial-specific 16S rRNA gene, may suggest that ammonium was assimilated in cyanobacteria offering a competitive environment for growth. Though both successful and unsuccessful OPG formation demonstrated a shift from non-phototrophic bacterial dominated communities on day 0 to cyanobacterial dominated communities on day 42, the successful community had a greater relative abundance (46%) of OTUs associated with genera Oscillatoria and Geitlernema than the unsuccessful community (27%), supporting that filamentous cyanobacteria are essential for successful OPG formation. A greater concentration of chlorophyll b in the unsuccessful OPG formation suggested a greater abundance of algal species. This study offers indicators of granulation success, notably availability of inorganic nitrogen and chlorophyll a and b concentrations for monitoring the health and growth of biomass for a potential OPG process.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: AMB Express Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: AMB Express Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania