Your browser doesn't support javascript.
loading
Automated morphological analysis of clinical language samples.
Gorman, Kyle; Bedrick, Steven; Kiss, Géza; Morley, Eric; Ingham, Rosemary; Mohammad, Metrah; Papadakis, Katina; van Santen, Jan P H.
Afiliación
  • Gorman K; Center for Spoken Language Understanding, Oregon Health & Science University, Portland, OR, USA.
  • Bedrick S; Center for Spoken Language Understanding, Oregon Health & Science University, Portland, OR, USA.
  • Kiss G; Center for Spoken Language Understanding, Oregon Health & Science University, Portland, OR, USA.
  • Morley E; Center for Spoken Language Understanding, Oregon Health & Science University, Portland, OR, USA.
  • Ingham R; Center for Spoken Language Understanding, Oregon Health & Science University, Portland, OR, USA.
  • Mohammad M; Center for Spoken Language Understanding, Oregon Health & Science University, Portland, OR, USA.
  • Papadakis K; Center for Spoken Language Understanding, Oregon Health & Science University, Portland, OR, USA.
  • van Santen JPH; Center for Spoken Language Understanding, Oregon Health & Science University, Portland, OR, USA.
Proc Conf ; 2015: 108-116, 2015 Jun 05.
Article en En | MEDLINE | ID: mdl-28691122
Quantitative analysis of clinical language samples is a powerful tool for assessing and screening developmental language impairments, but requires extensive manual transcription, annotation, and calculation, resulting in error-prone results and clinical underutilization. We describe a system that performs automated morphological analysis needed to calculate statistics such as the mean length of utterance in morphemes (MLUM), so that these statistics can be computed directly from orthographic transcripts. Estimates of MLUM computed by this system are closely comparable to those produced by manual annotation. Our system can be used in conjunction with other automated annotation techniques, such as maze detection. This work represents an important first step towards increased automation of language sample analysis, and towards attendant benefits of automation, including clinical greater utilization and reduced variability in care delivery.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Guideline Idioma: En Revista: Proc Conf Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Guideline Idioma: En Revista: Proc Conf Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos