Your browser doesn't support javascript.
loading
SOTXTSTREAM: Density-based self-organizing clustering of text streams.
Bryant, Avory C; Cios, Krzysztof J.
Afiliación
  • Bryant AC; Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States of America.
  • Cios KJ; Naval Surface Warfare Center Dahlgren Division, US Navy, Dahlgren, VA, United States of America.
PLoS One ; 12(7): e0180543, 2017.
Article en En | MEDLINE | ID: mdl-28686655
A streaming data clustering algorithm is presented building upon the density-based self-organizing stream clustering algorithm SOSTREAM. Many density-based clustering algorithms are limited by their inability to identify clusters with heterogeneous density. SOSTREAM addresses this limitation through the use of local (nearest neighbor-based) density determinations. Additionally, many stream clustering algorithms use a two-phase clustering approach. In the first phase, a micro-clustering solution is maintained online, while in the second phase, the micro-clustering solution is clustered offline to produce a macro solution. By performing self-organization techniques on micro-clusters in the online phase, SOSTREAM is able to maintain a macro clustering solution in a single phase. Leveraging concepts from SOSTREAM, a new density-based self-organizing text stream clustering algorithm, SOTXTSTREAM, is presented that addresses several shortcomings of SOSTREAM. Gains in clustering performance of this new algorithm are demonstrated on several real-world text stream datasets.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Programas Informáticos / Seguridad Computacional / Internet Límite: Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Programas Informáticos / Seguridad Computacional / Internet Límite: Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos