Jaburetox: update on a urease-derived peptide.
J Venom Anim Toxins Incl Trop Dis
; 23: 32, 2017.
Article
en En
| MEDLINE
| ID: mdl-28638403
Urease from Canavalia ensiformis seeds was the first enzyme ever to be crystallized, in 1926. These proteins, found in plants, bacteria and fungi, present different biological properties including catalytic hydrolysis of urea, and also enzyme-independent activities, such as induction of exocytosis, pro-inflammatory effects, neurotoxicity, antifungal and insecticidal properties. Urease is toxic to insects and fungi per se but part of this toxicity relies on an internal peptide (~11 kDa), which is released upon digestion of the protein by insect enzymes. A recombinant form of this peptide, called jaburetox (JBTX), was constructed using jbureII gene as a template. The peptide exhibits liposome disruption properties, and insecticidal and fungicidal activities. Here we review the known biological properties activities of JBTX, and comment on new ones not yet fully characterized. JBTX was able to cause mortality of Aedes aegypti larvae in a feeding assay whereas in a dose as low as of 0.1 µg it provoked death of Triatoma infestans bugs. JBTX (10-5-10-6 M) inhibits the growth of E. coli, P. aeruginosa and B. cereus after 24 h incubation. Multilamellar liposomes interacting with JBTX undergo reorganization of the membrane's lipids as detected by small angle X-ray scattering (SAXS) studies. Encapsulating JBTX into lipid nanoparticles led to an increase of the peptide's antifungal activity. Transgenic tobacco and sugarcane plants expressing the insecticidal peptide JBTX, showed increased resistance to attack of the insect pests Spodoptera frugiperda, Diatraea saccharalis and Telchin licus licus. Many questions remain unanswered; however, so far, JBTX has shown to be a versatile peptide that can be used against various insect and fungus species, and in new bacterial control strategies.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
J Venom Anim Toxins Incl Trop Dis
Año:
2017
Tipo del documento:
Article
Pais de publicación:
Brasil