Your browser doesn't support javascript.
loading
Comparing Prevalence Estimates From Population-Based Surveys to Inform Surveillance Using Electronic Health Records.
Tatem, Kathleen S; Romo, Matthew L; McVeigh, Katharine H; Chan, Pui Ying; Lurie-Moroni, Elizabeth; Thorpe, Lorna E; Perlman, Sharon E.
Afiliación
  • Tatem KS; New York City Department of Health and Mental Hygiene, Long Island City, New York.
  • Romo ML; New York City Department of Health and Mental Hygiene, Long Island City, New York.
  • McVeigh KH; City University of New York School of Public Health, New York, New York.
  • Chan PY; Division of Family and Child Health, New York City Department of Health and Mental Hygiene, 42-09 28th St, CN 24, Long Island City, New York 11101-4132. Email: tmcveigh@health.nyc.gov.
  • Lurie-Moroni E; New York City Department of Health and Mental Hygiene, Long Island City, New York.
  • Thorpe LE; New York City Department of Health and Mental Hygiene, Long Island City, New York.
  • Perlman SE; City University of New York School of Public Health, New York, New York.
Prev Chronic Dis ; 14: E44, 2017 06 08.
Article en En | MEDLINE | ID: mdl-28595032
INTRODUCTION: Electronic health record (EHR) systems provide an opportunity to use a novel data source for population health surveillance. Validation studies that compare prevalence estimates from EHRs and surveys most often use difference testing, which can, because of large sample sizes, lead to detection of significant differences that are not meaningful. We explored a novel application of the two one-sided t test (TOST) to assess the equivalence of prevalence estimates in 2 population-based surveys to inform margin selection for validating EHR-based surveillance prevalence estimates derived from large samples. METHODS: We compared prevalence estimates of health indicators in the 2013 Community Health Survey (CHS) and the 2013-2014 New York City Health and Nutrition Examination Survey (NYC HANES) by using TOST, a 2-tailed t test, and other goodness-of-fit measures. RESULTS: A ±5 percentage-point equivalence margin for a TOST performed well for most health indicators. For health indicators with a prevalence estimate of less than 10% (extreme obesity [CHS, 3.5%; NYC HANES, 5.1%] and serious psychological distress [CHS, 5.2%; NYC HANES, 4.8%]), a ±2.5 percentage-point margin was more consistent with other goodness-of-fit measures than the larger percentage-point margins. CONCLUSION: A TOST with a ±5 percentage-point margin was useful in establishing equivalence, but a ±2.5 percentage-point margin may be appropriate for health indicators with a prevalence estimate of less than 10%. Equivalence testing can guide future efforts to validate EHR data.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Encuestas Nutricionales / Vigilancia de la Población / Encuestas Epidemiológicas / Registros Electrónicos de Salud Tipo de estudio: Prevalence_studies / Qualitative_research / Risk_factors_studies / Screening_studies Aspecto: Patient_preference Límite: Humans Idioma: En Revista: Prev Chronic Dis Asunto de la revista: SAUDE PUBLICA Año: 2017 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Encuestas Nutricionales / Vigilancia de la Población / Encuestas Epidemiológicas / Registros Electrónicos de Salud Tipo de estudio: Prevalence_studies / Qualitative_research / Risk_factors_studies / Screening_studies Aspecto: Patient_preference Límite: Humans Idioma: En Revista: Prev Chronic Dis Asunto de la revista: SAUDE PUBLICA Año: 2017 Tipo del documento: Article Pais de publicación: Estados Unidos