Your browser doesn't support javascript.
loading
Active microrheology determines scale-dependent material properties of Chaetopterus mucus.
Weigand, W J; Messmore, A; Tu, J; Morales-Sanz, A; Blair, D L; Deheyn, D D; Urbach, J S; Robertson-Anderson, R M.
Afiliación
  • Weigand WJ; Department of Physics and Biophysics, University of San Diego, San Diego, California, United States of America.
  • Messmore A; Department of Physics and Biophysics, University of San Diego, San Diego, California, United States of America.
  • Tu J; Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, California, United States of America.
  • Morales-Sanz A; Department of Physics and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington DC, United States of America.
  • Blair DL; Department of Physics and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington DC, United States of America.
  • Deheyn DD; Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, California, United States of America.
  • Urbach JS; Department of Physics and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington DC, United States of America.
  • Robertson-Anderson RM; Department of Physics and Biophysics, University of San Diego, San Diego, California, United States of America.
PLoS One ; 12(5): e0176732, 2017.
Article en En | MEDLINE | ID: mdl-28562662
We characterize the lengthscale-dependent rheological properties of mucus from the ubiquitous Chaetopterus marine worm. We use optically trapped probes (2-10 µm) to induce microscopic strains and measure the stress response as a function of oscillation amplitude. Our results show that viscoelastic properties are highly dependent on strain scale (l), indicating three distinct lengthscale-dependent regimes at l1 ≤4 µm, l2≈4-10 µm, and l3≥10 µm. While mucus response is similar to water for l1, suggesting that probes rarely contact the mucus mesh, the response for l2 is distinctly more viscous and independent of probe size, indicative of continuum mechanics. Only for l3 does the response match the macroscopic elasticity, likely due to additional stiffer constraints that strongly resist probe displacement. Our results suggest that, rather than a single lengthscale governing crossover from viscous to elastic, mucus responds as a hierarchical network with a loose biopolymer mesh coupled to a larger scaffold responsible for macroscopic gel-like mechanics.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Poliquetos / Reología Límite: Animals Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Poliquetos / Reología Límite: Animals Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos