Your browser doesn't support javascript.
loading
Electroencephalogram-based decoding cognitive states using convolutional neural network and likelihood ratio based score fusion.
Zafar, Raheel; Dass, Sarat C; Malik, Aamir Saeed.
Afiliación
  • Zafar R; Centre for Intelligent Signal and Imaging Research (CISIR), Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia.
  • Dass SC; Centre for Intelligent Signal and Imaging Research (CISIR), Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia.
  • Malik AS; Centre for Intelligent Signal and Imaging Research (CISIR), Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia.
PLoS One ; 12(5): e0178410, 2017.
Article en En | MEDLINE | ID: mdl-28558002
Electroencephalogram (EEG)-based decoding human brain activity is challenging, owing to the low spatial resolution of EEG. However, EEG is an important technique, especially for brain-computer interface applications. In this study, a novel algorithm is proposed to decode brain activity associated with different types of images. In this hybrid algorithm, convolutional neural network is modified for the extraction of features, a t-test is used for the selection of significant features and likelihood ratio-based score fusion is used for the prediction of brain activity. The proposed algorithm takes input data from multichannel EEG time-series, which is also known as multivariate pattern analysis. Comprehensive analysis was conducted using data from 30 participants. The results from the proposed method are compared with current recognized feature extraction and classification/prediction techniques. The wavelet transform-support vector machine method is the most popular currently used feature extraction and prediction method. This method showed an accuracy of 65.7%. However, the proposed method predicts the novel data with improved accuracy of 79.9%. In conclusion, the proposed algorithm outperformed the current feature extraction and prediction method.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Redes Neurales de la Computación / Cognición / Electroencefalografía Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2017 Tipo del documento: Article País de afiliación: Malasia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Redes Neurales de la Computación / Cognición / Electroencefalografía Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2017 Tipo del documento: Article País de afiliación: Malasia Pais de publicación: Estados Unidos