Inferring the physical properties of yeast chromatin through Bayesian analysis of whole nucleus simulations.
Genome Biol
; 18(1): 81, 2017 05 03.
Article
en En
| MEDLINE
| ID: mdl-28468672
BACKGROUND: The structure and mechanical properties of chromatin impact DNA functions and nuclear architecture but remain poorly understood. In budding yeast, a simple polymer model with minimal sequence-specific constraints and a small number of structural parameters can explain diverse experimental data on nuclear architecture. However, how assumed chromatin properties affect model predictions was not previously systematically investigated. RESULTS: We used hundreds of dynamic chromosome simulations and Bayesian inference to determine chromatin properties consistent with an extensive dataset that includes hundreds of measurements from imaging in fixed and live cells and two Hi-C studies. We place new constraints on average chromatin fiber properties, narrowing down the chromatin compaction to ~53-65 bp/nm and persistence length to ~52-85 nm. These constraints argue against a 20-30 nm fiber as the exclusive chromatin structure in the genome. Our best model provides a much better match to experimental measurements of nuclear architecture and also recapitulates chromatin dynamics measured on multiple loci over long timescales. CONCLUSION: This work substantially improves our understanding of yeast chromatin mechanics and chromosome architecture and provides a new analytic framework to infer chromosome properties in other organisms.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Saccharomyces cerevisiae
/
Simulación por Computador
/
Cromatina
/
Núcleo Celular
/
Ensamble y Desensamble de Cromatina
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Genome Biol
Asunto de la revista:
BIOLOGIA MOLECULAR
/
GENETICA
Año:
2017
Tipo del documento:
Article
País de afiliación:
Francia
Pais de publicación:
Reino Unido