Your browser doesn't support javascript.
loading
Transcriptome comparison reveals insights into muscle response to hypoxia in blunt snout bream (Megalobrama amblycephala).
Chen, Bo-Xiang; Yi, Shao-Kui; Wang, Wei-Feng; He, Yan; Huang, Yan; Gao, Ze-Xia; Liu, Hong; Wang, Wei-Min; Wang, Huan-Ling.
Afiliación
  • Chen BX; Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, 430070 Wuhan, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, 430070 Wuha
  • Yi SK; Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, 430070 Wuhan, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, 430070 Wuha
  • Wang WF; Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, 430070 Wuhan, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, 430070 Wuha
  • He Y; Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, 430070 Wuhan, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, 430070 Wuha
  • Huang Y; Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, 430070 Wuhan, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, 430070 Wuha
  • Gao ZX; Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, 430070 Wuhan, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, 430070 Wuha
  • Liu H; Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, 430070 Wuhan, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, 430070 Wuha
  • Wang WM; Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, 430070 Wuhan, PR China.
  • Wang HL; Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, 430070 Wuhan, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, 430070 Wuha
Gene ; 624: 6-13, 2017 Aug 15.
Article en En | MEDLINE | ID: mdl-28431977
The economic and biological significance of blunt snout bream (Megalobrama amblycephala) makes this species important to explore the underlying molecular mechanism of hypoxia response. In the present study, we compared the transcriptional responses to serious hypoxia in skeletal muscle among hypoxia tolerant (MT), sensitive (MS) and control (without hypoxia treatment, MC) M. amblycephala obtained according to the time difference of losing balance after hypoxia treatment. A total of 88,200,889 clean reads were generated and assembled into 44,493 unigenes. Transcriptomic comparison revealed 463 genes differentially expressed among different groups. A similar hypoxia-induced transcription patterns suggested a common hypoxia response involved in cell cycle, p53 signaling pathway, apoptosis, heart contraction and blood circulation. Interesting, four genes, heat shock protein beta-8 (hspb8), cysteine/serine-rich nuclear protein 1 (csrnp1), salt-inducible kinase 1 (sik1), and visinin-like 1a (vsnl1a) were up-regulated in MT Vs MC but down-regulated in MS Vs MC. Additionally, FoxO signaling pathway was significantly enriched only in MT Vs MC. These results not only provided the first insights into the mechanism that muscle tissue coped with the hypoxia stress in cyprinid species, but offered a theory base for breeding of M. amblycephala with hypoxia-resistant traits.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Cipriniformes / Músculo Esquelético / Transcriptoma / Hipoxia Límite: Animals Idioma: En Revista: Gene Año: 2017 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Cipriniformes / Músculo Esquelético / Transcriptoma / Hipoxia Límite: Animals Idioma: En Revista: Gene Año: 2017 Tipo del documento: Article Pais de publicación: Países Bajos