Polyisoprenylated cysteinyl amide inhibitors disrupt actin cytoskeleton organization, induce cell rounding and block migration of non-small cell lung cancer.
Oncotarget
; 8(19): 31726-31744, 2017 May 09.
Article
en En
| MEDLINE
| ID: mdl-28423648
The malignant potential of Non-Small Cell Lung Cancer (NSCLC) is dependent on cellular processes that promote metastasis. F-actin organization is central to cell migration, invasion, adhesion and angiogenesis, processes involved in metastasis. F-actin remodeling is enhanced by the overexpression and/or hyper-activation of some members of the Rho family of small GTPases. Therefore, agents that mitigate hyperactive Rho proteins may be relevant for controlling metastasis. We previously reported the role of polyisoprenylated cysteinyl amide inhibitors (PCAIs) as potential inhibitors of cancers with hyperactive small GTPases. In this report, we investigate the potential role of PCAIs against NSCLC cells and show that as low as 0.5 µM PCAIs significantly inhibit 2D and 3D NCI-H1299 cell migration by 48% and 45%, respectively. PCAIs at 1 µM inhibited 2D and 3D NCI-H1299 cell invasion through Matrigel by 50% and 85%, respectively. Additionally, exposure to 5 µM of the PCAIs for 24 h caused at least a 66% drop in the levels of Rac1, Cdc42, and RhoA and a 38% drop in F-actin intensity at the cell membrane. This drop in F-actin was accompanied by a 73% reduction in the number of filopodia per cell. Interestingly, the polyisoprenyl group of the PCAIs is essential for these effects, as NSL-100, a non-farnesylated analog, does not elicit similar effects on F-actin assembly and organization. Our findings indicate that PCAIs disrupt F-actin assembly and organization to suppress cell motility and invasion. The PCAIs may be an effective therapy option for NSCLC metastasis and invasion control.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Movimiento Celular
/
Actinas
/
Carcinoma de Pulmón de Células no Pequeñas
/
Amidas
/
Neoplasias Pulmonares
/
Antineoplásicos
Límite:
Humans
Idioma:
En
Revista:
Oncotarget
Año:
2017
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos