Your browser doesn't support javascript.
loading
Tunneling effects in the unimolecular decay of (CH3)2COO Criegee intermediates to OH radical products.
Fang, Yi; Barber, Victoria P; Klippenstein, Stephen J; McCoy, Anne B; Lester, Marsha I.
Afiliación
  • Fang Y; Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.
  • Barber VP; Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.
  • Klippenstein SJ; Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.
  • McCoy AB; Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.
  • Lester MI; Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.
J Chem Phys ; 146(13): 134307, 2017 Apr 07.
Article en En | MEDLINE | ID: mdl-28390384
Unimolecular decay of the dimethyl substituted Criegee intermediate (CH3)2COO is observed at energies significantly below the transition state barrier associated with hydrogen atom transfer [Y. Fang et al., J. Chem. Phys. 144, 061102 (2016)] with time-resolved detection of the resultant OH radical products. (CH3)2COO is prepared at specific energies in the 3900-4600 cm-1 region through IR excitation of combination bands involving CH stretch and another lower frequency mode, and the OH products are detected by UV laser-induced fluorescence. OH appearance times on the order of microseconds are observed in this deep tunneling regime, which are about 100 times slower than that in the vicinity of the barrier. The experimental rates are in good accord with Rice-Ramsperger-Kassel-Marcus (RRKM) calculations of the microcanonical dissociation rates for (CH3)2COO that include tunneling. Master equation modeling based on these microcanonical rates is used to predict the thermal decay rate of (CH3)2COO to OH products under atmospheric conditions of 276 s-1 at 298 K (high pressure limit). Thermal unimolecular decay of (CH3)2COO to OH products is shown to have significant contributions from tunneling at energies much below the barrier to H-atom transfer.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Chem Phys Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Chem Phys Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos