Two-Dimensional Platform for Networks of Majorana Bound States.
Phys Rev Lett
; 118(10): 107701, 2017 Mar 10.
Article
en En
| MEDLINE
| ID: mdl-28339276
We model theoretically a two-dimensional electron gas (2DEG) covered by a superconductor and demonstrate that topological superconducting channels are formed when stripes of the superconducting layer are removed. As a consequence, Majorana bound states (MBSs) are created at the ends of the stripes. We calculate the topological invariant and energy gap of a single stripe, using realistic values for an InAs 2DEG proximitized by an epitaxial Al layer. We show that the topological gap is enhanced when the structure is made asymmetric. This can be achieved either by imposing a phase difference (by driving a supercurrent or using a magnetic-flux loop) over the strip or by replacing one superconductor by a metallic gate. Both strategies also enable control over the MBS splitting, thereby facilitating braiding and readout schemes based on controlled fusion of MBSs. Finally, we outline how a network of Majorana stripes can be designed.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Phys Rev Lett
Año:
2017
Tipo del documento:
Article
País de afiliación:
Dinamarca
Pais de publicación:
Estados Unidos