Your browser doesn't support javascript.
loading
Block-Copolymer-Templated Hierarchical Porous Carbon Nanostructures with Nitrogen-Rich Functional Groups for Molecular Sensing.
Sun, Ya-Sen; Lin, Chien-Fu; Luo, Shih-Ting; Su, Ching-Yuan.
Afiliación
  • Sun YS; Department of Chemical and Materials Engineering and ‡Graduate Institute of Energy Engineering, National Central University , Taoyuan 32001, Taiwan.
  • Lin CF; Department of Chemical and Materials Engineering and ‡Graduate Institute of Energy Engineering, National Central University , Taoyuan 32001, Taiwan.
  • Luo ST; Department of Chemical and Materials Engineering and ‡Graduate Institute of Energy Engineering, National Central University , Taoyuan 32001, Taiwan.
  • Su CY; Department of Chemical and Materials Engineering and ‡Graduate Institute of Energy Engineering, National Central University , Taoyuan 32001, Taiwan.
ACS Appl Mater Interfaces ; 9(37): 31235-31244, 2017 Sep 20.
Article en En | MEDLINE | ID: mdl-28319361
The self-assembly of a block copolymer offers access to micellar nanodomains with tunable dimensions and structural diversity through control of such molecular parameters as the volume fraction and molecular mass. We fabricated hierarchical porous carbon (HPC) nanostructures with bundles of aggregated nanospheres and with nitrogen-rich functional groups through pyrolysis of diblock copolymer micelles in multiple layers. The resultant HPC nanostructures with a considerable specific surface area serve as an excellent substrate for surface-enhanced Raman spectroscopy (SERS), coupled with fluorescence quenching, for molecular sensing of physically adsorbed Rhodamine 6G. The abundant nitrogen atoms terminating on the surface of HPC nanostructures play a critical role in promoting a large Raman enhancement generated via a chemical mechanism. Most importantly, the observed enhancement factors show a clear dependence on the mesoscale porosity within HPC nanostructures, indicating that the chemical enhancement can be steadily tuned with control over the interfacial areas as a function of the nanosphere size. The unique architecture of HPC nanostructures based on the construction of a building block of a well-defined network of core-shell nanospheres provides a new design strategy for fabricating SERS substrates.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2017 Tipo del documento: Article País de afiliación: Taiwán Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2017 Tipo del documento: Article País de afiliación: Taiwán Pais de publicación: Estados Unidos