Mesenchymal stromal cells (MSCs) induce ex vivo proliferation and erythroid commitment of cord blood haematopoietic stem cells (CB-CD34+ cells).
PLoS One
; 12(2): e0172430, 2017.
Article
en En
| MEDLINE
| ID: mdl-28231331
A human bone marrow-derived mesenchymal stromal cell (MSCs) and cord blood-derived CD34+ stem cell co-culture system was set up in order to evaluate the proliferative and differentiative effects induced by MSCs on CD34+ stem cells, and the reciprocal influences on gene expression profiles. After 10 days of co-culture, non-adherent (SN-fraction) and adherent (AD-fraction) CD34+ stem cells were collected and analysed separately. In the presence of MSCs, a significant increase in CD34+ cell number was observed (fold increase = 14.68), mostly in the SN-fraction (fold increase = 13.20). This was combined with a significant increase in CD34+ cell differentiation towards the BFU-E colonies and with a decrease in the CFU-GM. These observations were confirmed by microarray analysis. Through gene set enrichment analysis (GSEA), we noted a significant enrichment in genes involved in heme metabolism (e.g. LAMP2, CLCN3, BMP2K), mitotic spindle formation and proliferation (e.g. PALLD, SOS1, CCNA1) and TGF-beta signalling (e.g. ID1) and a down-modulation of genes participating in myeloid and lymphoid differentiation (e.g. PCGF2) in the co-cultured CD34+ stem cells. On the other hand, a significant enrichment in genes involved in oxygen-level response (e.g. TNFAIP3, SLC2A3, KLF6) and angiogenesis (e.g. VEGFA, IGF1, ID1) was found in the co-cultured MSCs. Taken together, our results suggest that MSCs can exert a priming effect on CD34+ stem cells, regulating their proliferation and erythroid differentiation. In turn, CD34+ stem cells seem to be able to polarise the BM-niche towards the vascular compartment by modulating molecular pathways related to hypoxia and angiogenesis.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Células Madre Hematopoyéticas
/
Células Eritroides
/
Sangre Fetal
/
Células Madre Mesenquimatosas
Límite:
Adult
/
Female
/
Humans
/
Male
Idioma:
En
Revista:
PLoS One
Asunto de la revista:
CIENCIA
/
MEDICINA
Año:
2017
Tipo del documento:
Article
País de afiliación:
Italia
Pais de publicación:
Estados Unidos