Your browser doesn't support javascript.
loading
A multi-objective constraint-based approach for modeling genome-scale microbial ecosystems.
Budinich, Marko; Bourdon, Jérémie; Larhlimi, Abdelhalim; Eveillard, Damien.
Afiliación
  • Budinich M; Computational Biology group, LINA UMR 6241 CNRS, EMN, Université de Nantes, Nantes, France.
  • Bourdon J; Computational Biology group, LINA UMR 6241 CNRS, EMN, Université de Nantes, Nantes, France.
  • Larhlimi A; Computational Biology group, LINA UMR 6241 CNRS, EMN, Université de Nantes, Nantes, France.
  • Eveillard D; Computational Biology group, LINA UMR 6241 CNRS, EMN, Université de Nantes, Nantes, France.
PLoS One ; 12(2): e0171744, 2017.
Article en En | MEDLINE | ID: mdl-28187207
Interplay within microbial communities impacts ecosystems on several scales, and elucidation of the consequent effects is a difficult task in ecology. In particular, the integration of genome-scale data within quantitative models of microbial ecosystems remains elusive. This study advocates the use of constraint-based modeling to build predictive models from recent high-resolution -omics datasets. Following recent studies that have demonstrated the accuracy of constraint-based models (CBMs) for simulating single-strain metabolic networks, we sought to study microbial ecosystems as a combination of single-strain metabolic networks that exchange nutrients. This study presents two multi-objective extensions of CBMs for modeling communities: multi-objective flux balance analysis (MO-FBA) and multi-objective flux variability analysis (MO-FVA). Both methods were applied to a hot spring mat model ecosystem. As a result, multiple trade-offs between nutrients and growth rates, as well as thermodynamically favorable relative abundances at community level, were emphasized. We expect this approach to be used for integrating genomic information in microbial ecosystems. Following models will provide insights about behaviors (including diversity) that take place at the ecosystem scale.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Genoma Microbiano / Microbiota / Modelos Teóricos Tipo de estudio: Prognostic_studies Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2017 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Genoma Microbiano / Microbiota / Modelos Teóricos Tipo de estudio: Prognostic_studies Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2017 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Estados Unidos