Your browser doesn't support javascript.
loading
Toxin Mediates Sepsis Caused by Methicillin-Resistant Staphylococcus epidermidis.
Qin, Li; Da, Fei; Fisher, Emilie L; Tan, Daniel C S; Nguyen, Thuan H; Fu, Chih-Lung; Tan, Vee Y; McCausland, Joshua W; Sturdevant, Daniel E; Joo, Hwang-Soo; Queck, Shu Y; Cheung, Gordon Y C; Otto, Michael.
Afiliación
  • Qin L; Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, Maryland, United States of America.
  • Da F; Department of Dermatology, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.
  • Fisher EL; Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, Maryland, United States of America.
  • Tan DC; Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China.
  • Nguyen TH; Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, Maryland, United States of America.
  • Fu CL; Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, Maryland, United States of America.
  • Tan VY; Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, Maryland, United States of America.
  • McCausland JW; Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, Maryland, United States of America.
  • Sturdevant DE; Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, Maryland, United States of America.
  • Joo HS; Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, Maryland, United States of America.
  • Queck SY; Research Technology Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Hamilton, Montana, United States of America.
  • Cheung GY; Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, Maryland, United States of America.
  • Otto M; Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, Maryland, United States of America.
PLoS Pathog ; 13(2): e1006153, 2017 02.
Article en En | MEDLINE | ID: mdl-28151994
Bacterial sepsis is a major killer in hospitalized patients. Coagulase-negative staphylococci (CNS) with the leading species Staphylococcus epidermidis are the most frequent causes of nosocomial sepsis, with most infectious isolates being methicillin-resistant. However, which bacterial factors underlie the pathogenesis of CNS sepsis is unknown. While it has been commonly believed that invariant structures on the surface of CNS trigger sepsis by causing an over-reaction of the immune system, we show here that sepsis caused by methicillin-resistant S. epidermidis is to a large extent mediated by the methicillin resistance island-encoded peptide toxin, PSM-mec. PSM-mec contributed to bacterial survival in whole human blood and resistance to neutrophil-mediated killing, and caused significantly increased mortality and cytokine expression in a mouse sepsis model. Furthermore, we show that the PSM-mec peptide itself, rather than the regulatory RNA in which its gene is embedded, is responsible for the observed virulence phenotype. This finding is of particular importance given the contrasting roles of the psm-mec locus that have been reported in S. aureus strains, inasmuch as our findings suggest that the psm-mec locus may exert effects in the background of S. aureus strains that differ from its original role in the CNS environment due to originally "unintended" interferences. Notably, while toxins have never been clearly implied in CNS infections, our tissue culture and mouse infection model data indicate that an important type of infection caused by the predominant CNS species is mediated to a large extent by a toxin. These findings suggest that CNS infections may be amenable to virulence-targeted drug development approaches.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Infecciones Estafilocócicas / Staphylococcus epidermidis / Toxinas Bacterianas Tipo de estudio: Prognostic_studies Límite: Animals / Female / Humans Idioma: En Revista: PLoS Pathog Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Infecciones Estafilocócicas / Staphylococcus epidermidis / Toxinas Bacterianas Tipo de estudio: Prognostic_studies Límite: Animals / Female / Humans Idioma: En Revista: PLoS Pathog Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos