Your browser doesn't support javascript.
loading
Complexity and Algorithms for Finding a Perfect Phylogeny from Mixed Tumor Samples.
Article en En | MEDLINE | ID: mdl-28113405
Hajirasouliha and Raphael (WABI 2014) proposed a model for deconvoluting mixed tumor samples measured from a collection of high-throughput sequencing reads. This is related to understanding tumor evolution and critical cancer mutations. In short, their formulation asks to split each row of a binary matrix so that the resulting matrix corresponds to a perfect phylogeny and has the minimum number of rows among all matrices with this property. In this paper, we disprove several claims about this problem, including an NP-hardness proof of it. However, we show that the problem is indeed NP-hard, by providing a different proof. We also prove NP-completeness of a variant of this problem proposed in the same paper. On the positive side, we propose an efficient (though not necessarily optimal) heuristic algorithm based on coloring co-comparability graphs, and a polynomial time algorithm for solving the problem optimally on matrix instances in which no column is contained in both columns of a pair of conflicting columns. Implementations of these algorithms are freely available at https://github.com/alexandrutomescu/MixedPerfectPhylogeny.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Filogenia / Algoritmos / Biología Computacional / Neoplasias Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: ACM Trans Comput Biol Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2018 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Filogenia / Algoritmos / Biología Computacional / Neoplasias Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: ACM Trans Comput Biol Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2018 Tipo del documento: Article Pais de publicación: Estados Unidos