Your browser doesn't support javascript.
loading
Motor control by precisely timed spike patterns.
Srivastava, Kyle H; Holmes, Caroline M; Vellema, Michiel; Pack, Andrea R; Elemans, Coen P H; Nemenman, Ilya; Sober, Samuel J.
Afiliación
  • Srivastava KH; Biomedical Engineering Doctoral Program, Georgia Institute of Technology and Emory University, Atlanta, GA 30322.
  • Holmes CM; Department of Physics, Emory University, Atlanta, GA 30322.
  • Vellema M; Department of Biology, Emory University, Atlanta, GA 30322.
  • Pack AR; Department of Biology, University of Southern Denmark, DK-5230 Odense, Denmark.
  • Elemans CP; Department of Biology, Emory University, Atlanta, GA 30322.
  • Nemenman I; Neuroscience Doctoral Program, Emory University, Atlanta, GA 30322.
  • Sober SJ; Department of Biology, University of Southern Denmark, DK-5230 Odense, Denmark.
Proc Natl Acad Sci U S A ; 114(5): 1171-1176, 2017 01 31.
Article en En | MEDLINE | ID: mdl-28100491
A fundamental problem in neuroscience is understanding how sequences of action potentials ("spikes") encode information about sensory signals and motor outputs. Although traditional theories assume that this information is conveyed by the total number of spikes fired within a specified time interval (spike rate), recent studies have shown that additional information is carried by the millisecond-scale timing patterns of action potentials (spike timing). However, it is unknown whether or how subtle differences in spike timing drive differences in perception or behavior, leaving it unclear whether the information in spike timing actually plays a role in brain function. By examining the activity of individual motor units (the muscle fibers innervated by a single motor neuron) and manipulating patterns of activation of these neurons, we provide both correlative and causal evidence that the nervous system uses millisecond-scale variations in the timing of spikes within multispike patterns to control a vertebrate behavior-namely, respiration in the Bengalese finch, a songbird. These findings suggest that a fundamental assumption of current theories of motor coding requires revision.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Respiración / Músculos Respiratorios / Potenciales de Acción / Pinzones / Contracción Muscular Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2017 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Respiración / Músculos Respiratorios / Potenciales de Acción / Pinzones / Contracción Muscular Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2017 Tipo del documento: Article Pais de publicación: Estados Unidos