Your browser doesn't support javascript.
loading
Inferring infection hazard in wildlife populations by linking data across individual and population scales.
Pepin, Kim M; Kay, Shannon L; Golas, Ben D; Shriner, Susan S; Gilbert, Amy T; Miller, Ryan S; Graham, Andrea L; Riley, Steven; Cross, Paul C; Samuel, Michael D; Hooten, Mevin B; Hoeting, Jennifer A; Lloyd-Smith, James O; Webb, Colleen T; Buhnerkempe, Michael G.
Afiliación
  • Pepin KM; National Wildlife Research Center, United States Department of Agriculture, 4101 Laporte Ave., Fort Collins, CO, 80521, USA.
  • Kay SL; National Wildlife Research Center, United States Department of Agriculture, 4101 Laporte Ave., Fort Collins, CO, 80521, USA.
  • Golas BD; Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.
  • Shriner SS; National Wildlife Research Center, United States Department of Agriculture, 4101 Laporte Ave., Fort Collins, CO, 80521, USA.
  • Gilbert AT; National Wildlife Research Center, United States Department of Agriculture, 4101 Laporte Ave., Fort Collins, CO, 80521, USA.
  • Miller RS; Animal and Plant Health Inspection Service, United States Department of Agriculture, Veterinary Services, 2155 Center Drive, Building B, Fort Collins, CO, 80523, USA.
  • Graham AL; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.
  • Riley S; MRC Centre for Outbreak Analysis and Modelling, Imperial College, London, UK.
  • Cross PC; U.S. Geological Survey, Northern Rocky Mountain Science Center, 2327 University Way, Bozeman, MT, 59715, USA.
  • Samuel MD; U. S. Geological Survey, Wisconsin Cooperative Wildlife Research Unit, 1630 Linden Drove, University of Wisconsin, Madison, WI, 53706, USA.
  • Hooten MB; U.S. Geological Survey, Colorado Cooperative Fish and Wildlife Research Unit; Departments of Fish, Wildlife, & Conservation Biology and Statistics, Colorado State University, 1484 Campus Delivery, Fort Collins, CO, 80523, USA.
  • Hoeting JA; Department of Statistics, Colorado State University, Fort Collins, CO, 80523, USA.
  • Lloyd-Smith JO; Department of Ecology & Evolutionary Biology, UCLA, Los Angeles, CA, 90095, USA.
  • Webb CT; Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.
  • Buhnerkempe MG; Department of Ecology & Evolutionary Biology, UCLA, Los Angeles, CA, 90095, USA.
Ecol Lett ; 20(3): 275-292, 2017 03.
Article en En | MEDLINE | ID: mdl-28090753
Our ability to infer unobservable disease-dynamic processes such as force of infection (infection hazard for susceptible hosts) has transformed our understanding of disease transmission mechanisms and capacity to predict disease dynamics. Conventional methods for inferring FOI estimate a time-averaged value and are based on population-level processes. Because many pathogens exhibit epidemic cycling and FOI is the result of processes acting across the scales of individuals and populations, a flexible framework that extends to epidemic dynamics and links within-host processes to FOI is needed. Specifically, within-host antibody kinetics in wildlife hosts can be short-lived and produce patterns that are repeatable across individuals, suggesting individual-level antibody concentrations could be used to infer time since infection and hence FOI. Using simulations and case studies (influenza A in lesser snow geese and Yersinia pestis in coyotes), we argue that with careful experimental and surveillance design, the population-level FOI signal can be recovered from individual-level antibody kinetics, despite substantial individual-level variation. In addition to improving inference, the cross-scale quantitative antibody approach we describe can reveal insights into drivers of individual-based variation in disease response, and the role of poorly understood processes such as secondary infections, in population-level dynamics of disease.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Peste / Enfermedades de las Aves de Corral / Métodos Epidemiológicos / Coyotes / Patos / Gripe Aviar / Gansos Tipo de estudio: Etiology_studies / Observational_studies / Prevalence_studies / Prognostic_studies / Risk_factors_studies Límite: Animals País/Región como asunto: America do norte Idioma: En Revista: Ecol Lett Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Peste / Enfermedades de las Aves de Corral / Métodos Epidemiológicos / Coyotes / Patos / Gripe Aviar / Gansos Tipo de estudio: Etiology_studies / Observational_studies / Prevalence_studies / Prognostic_studies / Risk_factors_studies Límite: Animals País/Región como asunto: America do norte Idioma: En Revista: Ecol Lett Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido