Your browser doesn't support javascript.
loading
Structure of a spliceosome remodelled for exon ligation.
Fica, Sebastian M; Oubridge, Chris; Galej, Wojciech P; Wilkinson, Max E; Bai, Xiao-Chen; Newman, Andrew J; Nagai, Kiyoshi.
Afiliación
  • Fica SM; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
  • Oubridge C; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
  • Galej WP; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
  • Wilkinson ME; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
  • Bai XC; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
  • Newman AJ; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
  • Nagai K; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
Nature ; 542(7641): 377-380, 2017 02 16.
Article en En | MEDLINE | ID: mdl-28076345
The spliceosome excises introns from pre-mRNAs in two sequential transesterifications-branching and exon ligation-catalysed at a single catalytic metal site in U6 small nuclear RNA (snRNA). Recently reported structures of the spliceosomal C complex with the cleaved 5' exon and lariat-3'-exon bound to the catalytic centre revealed that branching-specific factors such as Cwc25 lock the branch helix into position for nucleophilic attack of the branch adenosine at the 5' splice site. Furthermore, the ATPase Prp16 is positioned to bind and translocate the intron downstream of the branch point to destabilize branching-specific factors and release the branch helix from the active site. Here we present, at 3.8 Å resolution, the cryo-electron microscopy structure of a Saccharomyces cerevisiae spliceosome stalled after Prp16-mediated remodelling but before exon ligation. While the U6 snRNA catalytic core remains firmly held in the active site cavity of Prp8 by proteins common to both steps, the branch helix has rotated by 75° compared to the C complex and is stabilized in a new position by Prp17, Cef1 and the reoriented Prp8 RNase H-like domain. This rotation of the branch helix removes the branch adenosine from the catalytic core, creates a space for 3' exon docking, and restructures the pairing of the 5' splice site with the U6 snRNA ACAGAGA region. Slu7 and Prp18, which promote exon ligation, bind together to the Prp8 RNase H-like domain. The ATPase Prp22, bound to Prp8 in place of Prp16, could interact with the 3' exon, suggesting a possible basis for mRNA release after exon ligation. Together with the structure of the C complex, our structure of the C* complex reveals the two major conformations of the spliceosome during the catalytic stages of splicing.
Asunto(s)
Microscopía por Crioelectrón; Exones; Empalme del ARN; Saccharomyces cerevisiae/química; Saccharomyces cerevisiae/metabolismo; Empalmosomas/metabolismo; Empalmosomas/ultraestructura; Adenosina/metabolismo; Adenosina Trifosfatasas/metabolismo; Adenosina Trifosfatasas/ultraestructura; Biocatálisis; Dominio Catalítico; Proteínas de Ciclo Celular/metabolismo; Proteínas de Ciclo Celular/ultraestructura; ARN Helicasas DEAD-box/química; ARN Helicasas DEAD-box/metabolismo; ARN Helicasas DEAD-box/ultraestructura; Proteínas de Unión al ADN/metabolismo; Proteínas de Unión al ADN/ultraestructura; Exones/genética; Unión Proteica; Dominios Proteicos; ARN Helicasas/metabolismo; ARN Helicasas/ultraestructura; Sitios de Empalme de ARN/genética; Factores de Empalme de ARN/química; Factores de Empalme de ARN/metabolismo; Factores de Empalme de ARN/ultraestructura; ARN Nuclear Pequeño/genética; Proteínas de Unión al ARN/metabolismo; Proteínas de Unión al ARN/ultraestructura; Ribonucleasa H/química; Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo; Ribonucleoproteína Nuclear Pequeña U4-U6/ultraestructura; Ribonucleoproteína Nuclear Pequeña U5/metabolismo; Ribonucleoproteína Nuclear Pequeña U5/ultraestructura; Ribonucleoproteínas Nucleares Pequeñas/metabolismo; Ribonucleoproteínas Nucleares Pequeñas/ultraestructura; Saccharomyces cerevisiae/genética; Saccharomyces cerevisiae/ultraestructura; Proteínas de Saccharomyces cerevisiae/química; Proteínas de Saccharomyces cerevisiae/metabolismo; Proteínas de Saccharomyces cerevisiae/ultraestructura; Empalmosomas/química

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Empalme del ARN / Exones / Empalmosomas / Microscopía por Crioelectrón Idioma: En Revista: Nature Año: 2017 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Empalme del ARN / Exones / Empalmosomas / Microscopía por Crioelectrón Idioma: En Revista: Nature Año: 2017 Tipo del documento: Article Pais de publicación: Reino Unido