Specific Arabidopsis thaliana malic enzyme isoforms can provide anaplerotic pyruvate carboxylation function in Saccharomyces cerevisiae.
FEBS J
; 284(4): 654-665, 2017 02.
Article
en En
| MEDLINE
| ID: mdl-28075062
NAD(P)-malic enzyme (NAD(P)-ME) catalyzes the reversible oxidative decarboxylation of malate to pyruvate, CO2 , and NAD(P)H and is present as a multigene family in Arabidopsis thaliana. The carboxylation reaction catalyzed by purified recombinant Arabidopsis NADP-ME proteins is faster than those reported for other animal or plant isoforms. In contrast, no carboxylation activity could be detected in vitro for the NAD-dependent counterparts. In order to further investigate their putative carboxylating role in vivo, Arabidopsis NAD(P)-ME isoforms, as well as the NADP-ME2del2 (with a decreased ability to carboxylate pyruvate) and NADP-ME2R115A (lacking fumarate activation) versions, were functionally expressed in the cytosol of pyruvate carboxylase-negative (Pyc- ) Saccharomyces cerevisiae strains. The heterologous expression of NADP-ME1, NADP-ME2 (and its mutant proteins), and NADP-ME3 restored the growth of Pyc- S. cerevisiae on glucose, and this capacity was dependent on the availability of CO2 . On the other hand, NADP-ME4, NAD-ME1, and NAD-ME2 could not rescue the Pyc- strains from C4 auxotrophy. NADP-ME carboxylation activity could be measured in leaf crude extracts of knockout and overexpressing Arabidopsis lines with modified levels of NADP-ME, where this activity was correlated with the amount of NADP-ME2 transcript. These results indicate that specific A. thaliana NADP-ME isoforms are able to play an anaplerotic role in vivo and provide a basis for the study on the carboxylating activity of NADP-ME, which may contribute to the synthesis of C4 compounds and redox shuttling in plant cells.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Saccharomyces cerevisiae
/
Arabidopsis
/
Ácido Pirúvico
/
Proteínas de Arabidopsis
/
Malato-Deshidrogenasa (NADP/)
/
Malatos
/
NAD
/
NADP
Idioma:
En
Revista:
FEBS J
Asunto de la revista:
BIOQUIMICA
Año:
2017
Tipo del documento:
Article
País de afiliación:
Argentina
Pais de publicación:
Reino Unido