Your browser doesn't support javascript.
loading
GGPP-Mediated Protein Geranylgeranylation in Oocyte Is Essential for the Establishment of Oocyte-Granulosa Cell Communication and Primary-Secondary Follicle Transition in Mouse Ovary.
Jiang, Chen; Diao, Fan; Sang, Yong-Juan; Xu, Na; Zhu, Rui-Lou; Wang, Xiu-Xing; Chen, Zhong; Tao, Wei-Wei; Yao, Bing; Sun, Hai-Xiang; Huang, Xing-Xu; Xue, Bin; Li, Chao-Jun.
Afiliación
  • Jiang C; MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Centre for Mutant Mice, Nanjing, China.
  • Diao F; Collaborative Innovation Platform for Reproductive Biology and Technology of the Medical School of Nanjing University, Nanjing, China.
  • Sang YJ; MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Centre for Mutant Mice, Nanjing, China.
  • Xu N; MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Centre for Mutant Mice, Nanjing, China.
  • Zhu RL; Collaborative Innovation Platform for Reproductive Biology and Technology of the Medical School of Nanjing University, Nanjing, China.
  • Wang XX; MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Centre for Mutant Mice, Nanjing, China.
  • Chen Z; MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Centre for Mutant Mice, Nanjing, China.
  • Tao WW; Collaborative Innovation Platform for Reproductive Biology and Technology of the Medical School of Nanjing University, Nanjing, China.
  • Yao B; MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Centre for Mutant Mice, Nanjing, China.
  • Sun HX; MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Centre for Mutant Mice, Nanjing, China.
  • Huang XX; MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Centre for Mutant Mice, Nanjing, China.
  • Xue B; Collaborative Innovation Platform for Reproductive Biology and Technology of the Medical School of Nanjing University, Nanjing, China.
  • Li CJ; Collaborative Innovation Platform for Reproductive Biology and Technology of the Medical School of Nanjing University, Nanjing, China.
PLoS Genet ; 13(1): e1006535, 2017 Jan.
Article en En | MEDLINE | ID: mdl-28072828
Folliculogenesis is a progressive and highly regulated process, which is essential to provide ova for later reproductive life, requires the bidirectional communication between the oocyte and granulosa cells. This physical connection-mediated communication conveys not only the signals from the oocyte to granulosa cells that regulate their proliferation but also metabolites from the granulosa cells to the oocyte for biosynthesis. However, the underlying mechanism of establishing this communication is largely unknown. Here, we report that oocyte geranylgeranyl diphosphate (GGPP), a metabolic intermediate involved in protein geranylgeranylation, is required to establish the oocyte-granulosa cell communication. GGPP and geranylgeranyl diphosphate synthase (Ggpps) levels in oocytes increased during early follicular development. The selective depletion of GGPP in mouse oocytes impaired the proliferation of granulosa cells, primary-secondary follicle transition and female fertility. Mechanistically, GGPP depletion inhibited Rho GTPase geranylgeranylation and its GTPase activity, which was responsible for the accumulation of cell junction proteins in the oocyte cytoplasm and the failure to maintain physical connection between oocyte and granulosa cells. GGPP ablation also blocked Rab27a geranylgeranylation, which might account for the impaired secretion of oocyte materials such as Gdf9. Moreover, GGPP administration restored the defects in oocyte-granulosa cell contact, granulosa cell proliferation and primary-secondary follicle transition in Ggpps depletion mice. Our study provides the evidence that GGPP-mediated protein geranylgeranylation contributes to the establishment of oocyte-granulosa cell communication and then regulates the primary-secondary follicle transition, a key phase of folliculogenesis essential for female reproductive function.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oocitos / Comunicación Celular / Farnesiltransferasa / Folículo Ovárico / Células de la Granulosa / Complejos Multienzimáticos Límite: Animals Idioma: En Revista: PLoS Genet Asunto de la revista: GENETICA Año: 2017 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oocitos / Comunicación Celular / Farnesiltransferasa / Folículo Ovárico / Células de la Granulosa / Complejos Multienzimáticos Límite: Animals Idioma: En Revista: PLoS Genet Asunto de la revista: GENETICA Año: 2017 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos