Your browser doesn't support javascript.
loading
Phosphorus Fate and Dynamics in Greywater Biofiltration Systems.
Fowdar, Harsha S; Hatt, Belinda E; Cresswell, Tom; Harrison, Jennifer J; Cook, Perran L M; Deletic, Ana.
Afiliación
  • Fowdar HS; Monash Infrastructure Research Institute, Department of Civil Engineering, Monash University , Clayton, Victoria 3800, Australia.
  • Hatt BE; Cooperative Research Centre for Water Sensitive Cities , Melbourne 3800, Australia.
  • Cresswell T; Monash Infrastructure Research Institute, Department of Civil Engineering, Monash University , Clayton, Victoria 3800, Australia.
  • Harrison JJ; Cooperative Research Centre for Water Sensitive Cities , Melbourne 3800, Australia.
  • Cook PL; Environmental Research, Australian Nuclear Science and Technology Organisation (ANSTO) , New Illawarra Road, Lucas Heights, New South Wales 2234, Australia.
  • Deletic A; Environmental Research, Australian Nuclear Science and Technology Organisation (ANSTO) , New Illawarra Road, Lucas Heights, New South Wales 2234, Australia.
Environ Sci Technol ; 51(4): 2280-2287, 2017 02 21.
Article en En | MEDLINE | ID: mdl-28068476
Phosphorus, a critical environmental pollutant, is effectively removed from stormwater by biofiltration systems, mainly via sedimentation and straining. However, the fate of dissolved inflow phosphorus concentrations in these systems is unknown. Given the growing interest in using biofiltration systems to treat other polluted waters, for example greywater, such an understanding is imperative to optimize designs for successful long-term performance. A mass balance method and a radiotracer, 32P (as H3PO4), were used to investigate the partitioning of phosphorus (concentrations of 2.5-3.5 mg/L, >80% was in dissolved inorganic form) between the various biofilter components at the laboratory scale. Planted columns maintained a phosphorus removal efficiency of >95% over the 15-week study period. Plant storage was found to be the dominant phosphorus sink (64% on average). Approximately 60% of the phosphorus retained in the filter media was recovered in the top 0-6 cm. The 32P tracer results indicate that adsorption is the immediate primary fate of dissolved phosphorus in the system (up to 57% of input P). Plant assimilation occurs at other times, potentially liberating sorption sites for processing of subsequent incoming phosphorus. Plants with high nutrient uptake capacities and the ability to efficiently extract soil phosphorus, for example Carex appressa, are, thus, recommended for use in greywater biofilters.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fósforo / Nitrógeno Idioma: En Revista: Environ Sci Technol Año: 2017 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fósforo / Nitrógeno Idioma: En Revista: Environ Sci Technol Año: 2017 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Estados Unidos