Your browser doesn't support javascript.
loading
Assessment of in silico protein sequence analysis in the clinical classification of variants in cancer risk genes.
Kerr, Iain D; Cox, Hannah C; Moyes, Kelsey; Evans, Brent; Burdett, Brianna C; van Kan, Aric; McElroy, Heather; Vail, Paris J; Brown, Krystal L; Sumampong, Dechie B; Monteferrante, Nicholas J; Hardman, Kennedy L; Theisen, Aaron; Mundt, Erin; Wenstrup, Richard J; Eggington, Julie M.
Afiliación
  • Kerr ID; Myriad Genetic Laboratories, Inc., 320 Wakara Way, Salt Lake City, UT, 84108, USA. ikerr@myriad.com.
  • Cox HC; Myriad Genetic Laboratories, Inc., 320 Wakara Way, Salt Lake City, UT, 84108, USA.
  • Moyes K; Myriad Genetic Laboratories, Inc., 320 Wakara Way, Salt Lake City, UT, 84108, USA.
  • Evans B; Myriad Genetic Laboratories, Inc., 320 Wakara Way, Salt Lake City, UT, 84108, USA.
  • Burdett BC; Myriad Genetic Laboratories, Inc., 320 Wakara Way, Salt Lake City, UT, 84108, USA.
  • van Kan A; Myriad Genetic Laboratories, Inc., 320 Wakara Way, Salt Lake City, UT, 84108, USA.
  • McElroy H; Myriad Genetic Laboratories, Inc., 320 Wakara Way, Salt Lake City, UT, 84108, USA.
  • Vail PJ; Myriad Genetic Laboratories, Inc., 320 Wakara Way, Salt Lake City, UT, 84108, USA.
  • Brown KL; Myriad Genetic Laboratories, Inc., 320 Wakara Way, Salt Lake City, UT, 84108, USA.
  • Sumampong DB; Myriad Genetic Laboratories, Inc., 320 Wakara Way, Salt Lake City, UT, 84108, USA.
  • Monteferrante NJ; Myriad Genetic Laboratories, Inc., 320 Wakara Way, Salt Lake City, UT, 84108, USA.
  • Hardman KL; Myriad Genetic Laboratories, Inc., 320 Wakara Way, Salt Lake City, UT, 84108, USA.
  • Theisen A; Myriad Genetic Laboratories, Inc., 320 Wakara Way, Salt Lake City, UT, 84108, USA.
  • Mundt E; Myriad Genetic Laboratories, Inc., 320 Wakara Way, Salt Lake City, UT, 84108, USA.
  • Wenstrup RJ; Myriad Genetic Laboratories, Inc., 320 Wakara Way, Salt Lake City, UT, 84108, USA.
  • Eggington JM; Myriad Genetic Laboratories, Inc., 320 Wakara Way, Salt Lake City, UT, 84108, USA.
J Community Genet ; 8(2): 87-95, 2017 Apr.
Article en En | MEDLINE | ID: mdl-28050887
Missense variants represent a significant proportion of variants identified in clinical genetic testing. In the absence of strong clinical or functional evidence, the American College of Medical Genetics recommends that these findings be classified as variants of uncertain significance (VUS). VUSs may be reclassified to better inform patient care when new evidence is available. It is critical that the methods used for reclassification are robust in order to prevent inappropriate medical management strategies and unnecessary, life-altering surgeries. In an effort to provide evidence for classification, several in silico algorithms have been developed that attempt to predict the functional impact of missense variants through amino acid sequence conservation analysis. We report an analysis comparing internally derived, evidence-based classifications with the results obtained from six commonly used algorithms. We compiled a dataset of 1118 variants in BRCA1, BRCA2, MLH1, and MSH2 previously classified by our laboratory's evidence-based variant classification program. We compared internally derived classifications with those obtained from the following in silico tools: Align-GVGD, CONDEL, Grantham Analysis, MAPP-MMR, PolyPhen-2, and SIFT. Despite being based on similar underlying principles, all algorithms displayed marked divergence in accuracy, specificity, and sensitivity. Overall, accuracy ranged from 58.7 to 90.8% while the Matthews Correlation Coefficient ranged from 0.26-0.65. CONDEL, a weighted average of multiple algorithms, did not perform significantly better than its individual components evaluated here. These results suggest that the in silico algorithms evaluated here do not provide reliable evidence regarding the clinical significance of missense variants in genes associated with hereditary cancer.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Etiology_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Community Genet Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Etiology_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Community Genet Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania