Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production.
Nat Commun
; 8: 13907, 2017 01 03.
Article
en En
| MEDLINE
| ID: mdl-28045015
Scalable and sustainable solar hydrogen production through photocatalytic water splitting requires highly active and stable earth-abundant co-catalysts to replace expensive and rare platinum. Here we employ density functional theory calculations to direct atomic-level exploration, design and fabrication of a MXene material, Ti3C2 nanoparticles, as a highly efficient co-catalyst. Ti3C2 nanoparticles are rationally integrated with cadmium sulfide via a hydrothermal strategy to induce a super high visible-light photocatalytic hydrogen production activity of 14,342 µmol h-1 g-1 and an apparent quantum efficiency of 40.1% at 420 nm. This high performance arises from the favourable Fermi level position, electrical conductivity and hydrogen evolution capacity of Ti3C2 nanoparticles. Furthermore, Ti3C2 nanoparticles also serve as an efficient co-catalyst on ZnS or ZnxCd1-xS. This work demonstrates the potential of earth-abundant MXene family materials to construct numerous high performance and low-cost photocatalysts/photoelectrodes.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Nat Commun
Asunto de la revista:
BIOLOGIA
/
CIENCIA
Año:
2017
Tipo del documento:
Article
País de afiliación:
Australia
Pais de publicación:
Reino Unido