Your browser doesn't support javascript.
loading
Quantitative Trait Loci (QTL)-Guided Metabolic Engineering of a Complex Trait.
Maurer, Matthew J; Sutardja, Lawrence; Pinel, Dominic; Bauer, Stefan; Muehlbauer, Amanda L; Ames, Tyler D; Skerker, Jeffrey M; Arkin, Adam P.
Afiliación
  • Maurer MJ; Energy Biosciences Institute and ‡Department of Bioengineering, University of California , Berkeley, California 94720, United States.
  • Sutardja L; Biological Systems and Engineering Division, and ∥Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.
  • Pinel D; Energy Biosciences Institute and ‡Department of Bioengineering, University of California , Berkeley, California 94720, United States.
  • Bauer S; Biological Systems and Engineering Division, and ∥Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.
  • Muehlbauer AL; Energy Biosciences Institute and ‡Department of Bioengineering, University of California , Berkeley, California 94720, United States.
  • Ames TD; Biological Systems and Engineering Division, and ∥Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.
  • Skerker JM; Energy Biosciences Institute and ‡Department of Bioengineering, University of California , Berkeley, California 94720, United States.
  • Arkin AP; Biological Systems and Engineering Division, and ∥Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.
ACS Synth Biol ; 6(3): 566-581, 2017 03 17.
Article en En | MEDLINE | ID: mdl-27936603
Engineering complex phenotypes for industrial and synthetic biology applications is difficult and often confounds rational design. Bioethanol production from lignocellulosic feedstocks is a complex trait that requires multiple host systems to utilize, detoxify, and metabolize a mixture of sugars and inhibitors present in plant hydrolysates. Here, we demonstrate an integrated approach to discovering and optimizing host factors that impact fitness of Saccharomyces cerevisiae during fermentation of a Miscanthus x giganteus plant hydrolysate. We first used high-resolution Quantitative Trait Loci (QTL) mapping and systematic bulk Reciprocal Hemizygosity Analysis (bRHA) to discover 17 loci that differentiate hydrolysate tolerance between an industrially related (JAY291) and a laboratory (S288C) strain. We then used this data to identify a subset of favorable allelic loci that were most amenable for strain engineering. Guided by this "genetic blueprint", and using a dual-guide Cas9-based method to efficiently perform multikilobase locus replacements, we engineered an S288C-derived strain with superior hydrolysate tolerance than JAY291. Our methods should be generalizable to engineering any complex trait in S. cerevisiae, as well as other organisms.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Sitios de Carácter Cuantitativo Tipo de estudio: Prognostic_studies Idioma: En Revista: ACS Synth Biol Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Sitios de Carácter Cuantitativo Tipo de estudio: Prognostic_studies Idioma: En Revista: ACS Synth Biol Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos