Your browser doesn't support javascript.
loading
Area Determination of Diabetic Foot Ulcer Images Using a Cascaded Two-Stage SVM-Based Classification.
IEEE Trans Biomed Eng ; 64(9): 2098-2109, 2017 09.
Article en En | MEDLINE | ID: mdl-27893380
The standard chronic wound assessment method based on visual examination is potentially inaccurate and also represents a significant clinical workload. Hence, computer-based systems providing quantitative wound assessment may be valuable for accurately monitoring wound healing status, with the wound area the best suited for automated analysis. Here, we present a novel approach, using support vector machines (SVM) to determine the wound boundaries on foot ulcer images captured with an image capture box, which provides controlled lighting and range. After superpixel segmentation, a cascaded two-stage classifier operates as follows: in the first stage, a set of k binary SVM classifiers are trained and applied to different subsets of the entire training images dataset, and incorrectly classified instances are collected. In the second stage, another binary SVM classifier is trained on the incorrectly classified set. We extracted various color and texture descriptors from superpixels that are used as input for each stage in the classifier training. Specifically, color and bag-of-word representations of local dense scale invariant feature transformation features are descriptors for ruling out irrelevant regions, and color and wavelet-based features are descriptors for distinguishing healthy tissue from wound regions. Finally, the detected wound boundary is refined by applying the conditional random field method. We have implemented the wound classification on a Nexus 5 smartphone platform, except for training which was done offline. Results are compared with other classifiers and show that our approach provides high global performance rates (average sensitivity = 73.3%, specificity = 94.6%) and is sufficiently efficient for a smartphone-based image analysis.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Reconocimiento de Normas Patrones Automatizadas / Interpretación de Imagen Asistida por Computador / Fotograbar / Pie Diabético / Máquina de Vectores de Soporte / Aplicaciones Móviles Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: IEEE Trans Biomed Eng Año: 2017 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Reconocimiento de Normas Patrones Automatizadas / Interpretación de Imagen Asistida por Computador / Fotograbar / Pie Diabético / Máquina de Vectores de Soporte / Aplicaciones Móviles Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: IEEE Trans Biomed Eng Año: 2017 Tipo del documento: Article Pais de publicación: Estados Unidos