Your browser doesn't support javascript.
loading
Prediction of Protein-Protein Interactions by Evidence Combining Methods.
Chang, Ji-Wei; Zhou, Yan-Qing; Ul Qamar, Muhammad Tahir; Chen, Ling-Ling; Ding, Yu-Duan.
Afiliación
  • Chang JW; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China. longkaichang@163.com.
  • Zhou YQ; College of Informatics, Huazhong Agricultural University, Wuhan 430070, China. longkaichang@163.com.
  • Ul Qamar MT; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China. zhyq2611@163.com.
  • Chen LL; College of Informatics, Huazhong Agricultural University, Wuhan 430070, China. zhyq2611@163.com.
  • Ding YD; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China. m.tahirulqamar@hotmail.com.
Int J Mol Sci ; 17(11)2016 Nov 22.
Article en En | MEDLINE | ID: mdl-27879651
Most cellular functions involve proteins' features based on their physical interactions with other partner proteins. Sketching a map of protein-protein interactions (PPIs) is therefore an important inception step towards understanding the basics of cell functions. Several experimental techniques operating in vivo or in vitro have made significant contributions to screening a large number of protein interaction partners, especially high-throughput experimental methods. However, computational approaches for PPI predication supported by rapid accumulation of data generated from experimental techniques, 3D structure definitions, and genome sequencing have boosted the map sketching of PPIs. In this review, we shed light on in silico PPI prediction methods that integrate evidence from multiple sources, including evolutionary relationship, function annotation, sequence/structure features, network topology and text mining. These methods are developed for integration of multi-dimensional evidence, for designing the strategies to predict novel interactions, and for making the results consistent with the increase of prediction coverage and accuracy.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas / Biología Computacional / Mapeo de Interacción de Proteínas / Minería de Datos / Máquina de Vectores de Soporte Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: Int J Mol Sci Año: 2016 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas / Biología Computacional / Mapeo de Interacción de Proteínas / Minería de Datos / Máquina de Vectores de Soporte Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: Int J Mol Sci Año: 2016 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza