Identification of an Efficient Gene Expression Panel for Glioblastoma Classification.
PLoS One
; 11(11): e0164649, 2016.
Article
en En
| MEDLINE
| ID: mdl-27855170
We present here a novel genetic algorithm-based random forest (GARF) modeling technique that enables a reduction in the complexity of large gene disease signatures to highly accurate, greatly simplified gene panels. When applied to 803 glioblastoma multiforme samples, this method allowed the 840-gene Verhaak et al. gene panel (the standard in the field) to be reduced to a 48-gene classifier, while retaining 90.91% classification accuracy, and outperforming the best available alternative methods. Additionally, using this approach we produced a 32-gene panel which allows for better consistency between RNA-seq and microarray-based classifications, improving cross-platform classification retention from 69.67% to 86.07%. A webpage producing these classifications is available at http://simplegbm.semel.ucla.edu.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Neoplasias Encefálicas
/
Glioblastoma
/
Biología Computacional
/
Perfilación de la Expresión Génica
/
Transcriptoma
Tipo de estudio:
Diagnostic_studies
/
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
PLoS One
Asunto de la revista:
CIENCIA
/
MEDICINA
Año:
2016
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos