Elimination characteristics of post-operative isoflurane levels in alveolar exhaled breath via PTR-MS analysis.
J Breath Res
; 10(4): 046006, 2016 10 12.
Article
en En
| MEDLINE
| ID: mdl-27732571
Isoflurane (1-chloro-2,2,2-trifluoroethyl difluoromethyl ether), C3H2ClF5O, is a commonly used inhalation anaesthetic. Using a proton transfer reaction mass spectrometer (PTR-MS) we have detected isoflurane in the breath of patients several weeks following major surgery. That isoflurane is detected in the breath of patients so long after being anaesthetised raises questions about when cognitive function has fully returned to a patient. Temporal profiles of isoflurane concentrations in breath are presented for five patients (F/M 3/2, mean age 50 years, min-max 36-58 years) who had undergone liver transplant surgery. In addition, results from a headspace analysis of isoflurane are presented so that the product ions resulting from the reactions of H3O+ with isoflurane in PTR-MS could be easily identified in the absence of the complex chemical environment of breath. Six product ions were identified. In order of increasing m/z (using the 35Cl isotope where appropriate) these are [Formula: see text] (m/z 51), CHFCl+ (m/z 67), CF3CHCl+ (m/z 117), C3F4OCl+ (m/z 163), C3H2F4OCl+ (m/z 165), and C3F4OCl+ H2O (m/z 183). No protonated parent was detected. For the headspace study both clean air and CO2 enriched clean air (4% CO2) were used as buffer gases in the drift tube of the PTR-MS. The CO2 enriched air was used to determine if exhaled breath would affect the product ion branching ratios. Importantly no significant differences were observed, and therefore for isoflurane the product ion distributions determined in a normal air mixture can be used for breath analysis. Given that PTR-MS can be operated under different reduced electric fields (E/N), the dependence of the product ion branching percentages for isoflurane on E/N (96-138 Td) are reported.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Protones
/
Espectrometría de Masas
/
Pruebas Respiratorias
/
Espiración
/
Isoflurano
Tipo de estudio:
Prognostic_studies
Límite:
Adult
/
Female
/
Humans
/
Male
/
Middle aged
Idioma:
En
Revista:
J Breath Res
Año:
2016
Tipo del documento:
Article
Pais de publicación:
Reino Unido