Probing the Influence of Dielectric Environment on Excitons in Monolayer WSe2: Insight from High Magnetic Fields.
Nano Lett
; 16(11): 7054-7060, 2016 11 09.
Article
en En
| MEDLINE
| ID: mdl-27718588
Excitons in atomically thin semiconductors necessarily lie close to a surface, and therefore their properties are expected to be strongly influenced by the surrounding dielectric environment. However, systematic studies exploring this role are challenging, in part because the most readily accessible exciton parameter-the exciton's optical transition energy-is largely unaffected by the surrounding medium. Here we show that the role of the dielectric environment is revealed through its systematic influence on the size of the exciton, which can be directly measured via the diamagnetic shift of the exciton transition in high magnetic fields. Using exfoliated WSe2 monolayers affixed to single-mode optical fibers, we tune the surrounding dielectric environment by encapsulating the flakes with different materials and perform polarized low-temperature magneto-absorption studies to 65 T. The systematic increase of the exciton's size with dielectric screening, and concurrent reduction in binding energy (also inferred from these measurements), is quantitatively compared with leading theoretical models. These results demonstrate how exciton properties can be tuned in future 2D optoelectronic devices.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Nano Lett
Año:
2016
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos