Your browser doesn't support javascript.
loading
Two-level spatially structured models in spatio-temporal disease mapping.
Ugarte, María Dolores; Adin, Aritz; Goicoa, Tomás.
Afiliación
  • Ugarte MD; Department of Statistics and Operations Research, Public University of Navarre, Spain Institute for Advanced Materials (InaMat), Public University of Navarre, Spain lola@unavarra.es.
  • Adin A; Department of Statistics and Operations Research, Public University of Navarre, Spain Institute for Advanced Materials (InaMat), Public University of Navarre, Spain.
  • Goicoa T; Department of Statistics and Operations Research, Public University of Navarre, Spain Institute for Advanced Materials (InaMat), Public University of Navarre, Spain Research Network on Health Services in Chronic Diseases (REDISSEC), Spain.
Stat Methods Med Res ; 25(4): 1080-100, 2016 08.
Article en En | MEDLINE | ID: mdl-27566767
This work focuses on extending some classical spatio-temporal models in disease mapping. The objective is to present a family of flexible models to analyze real data naturally organized in two different levels of spatial aggregation like municipalities within health areas or provinces, or counties within states. Model fitting and inference will be carried out using integrated nested Laplace approximations. The performance of the new models compared to models including a single spatial random effect is assessed by simulation. Results show good behavior of the proposed two-level spatially structured models in terms of several criteria. Brain cancer mortality data in the municipalities of two regions in Spain will be analyzed using the new model proposals. It will be shown that a model with two-level spatial random effects overcomes the usual single-level models.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias Encefálicas / Análisis Espacio-Temporal Tipo de estudio: Prognostic_studies Límite: Humans País/Región como asunto: Europa Idioma: En Revista: Stat Methods Med Res Año: 2016 Tipo del documento: Article País de afiliación: España Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias Encefálicas / Análisis Espacio-Temporal Tipo de estudio: Prognostic_studies Límite: Humans País/Región como asunto: Europa Idioma: En Revista: Stat Methods Med Res Año: 2016 Tipo del documento: Article País de afiliación: España Pais de publicación: Reino Unido