Your browser doesn't support javascript.
loading
Strength Is in Numbers: Can Concordant Artificial Listeners Improve Prediction of Emotion from Speech?
Martinelli, Eugenio; Mencattini, Arianna; Daprati, Elena; Di Natale, Corrado.
Afiliación
  • Martinelli E; Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy.
  • Mencattini A; Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy.
  • Daprati E; Department of System Medicine and CBMS, University of Rome Tor Vergata, Rome, Italy.
  • Di Natale C; Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy.
PLoS One ; 11(8): e0161752, 2016.
Article en En | MEDLINE | ID: mdl-27563724
Humans can communicate their emotions by modulating facial expressions or the tone of their voice. Albeit numerous applications exist that enable machines to read facial emotions and recognize the content of verbal messages, methods for speech emotion recognition are still in their infancy. Yet, fast and reliable applications for emotion recognition are the obvious advancement of present 'intelligent personal assistants', and may have countless applications in diagnostics, rehabilitation and research. Taking inspiration from the dynamics of human group decision-making, we devised a novel speech emotion recognition system that applies, for the first time, a semi-supervised prediction model based on consensus. Three tests were carried out to compare this algorithm with traditional approaches. Labeling performances relative to a public database of spontaneous speeches are reported. The novel system appears to be fast, robust and less computationally demanding than traditional methods, allowing for easier implementation in portable voice-analyzers (as used in rehabilitation, research, industry, etc.) and for applications in the research domain (such as real-time pairing of stimuli to participants' emotional state, selective/differential data collection based on emotional content, etc.).
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Percepción Auditiva / Percepción del Habla / Voz / Reconocimiento en Psicología / Emociones Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Adolescent / Adult / Female / Humans / Male Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2016 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Percepción Auditiva / Percepción del Habla / Voz / Reconocimiento en Psicología / Emociones Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Adolescent / Adult / Female / Humans / Male Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2016 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Estados Unidos