Selective Adsorption of Thiols Using Gold Nanoparticles Supported on Metal Oxides.
Langmuir
; 32(36): 9197-205, 2016 09 13.
Article
en En
| MEDLINE
| ID: mdl-27552141
Selective capture of thiols from a synthetic hydrogen sulfide containing mixture using supported nanogold materials has been explored for the potential removal of thiols from sour gas production fluids. In this research, TiO2-, Al2O3-, SiO2-, and ZnO-supported gold nanoparticles have been studied for their usage as regeneratable adsorbents to capture CH3SH, C2H5SH, and i-C3H7SH. Au/TiO2 and Au/Al2O3 showed promising properties for removing the thiols efficiently from a gas-phase mixture; however, Au/Al2O3 did catalyze some undesirable side reactions, e.g., carbonyl sulfide formation. It was found that a mild temperature of T = 200 °C was sufficient for regeneration of either Au/TiO2 or Au/Al2O3 adsorbent. The metal oxide mesopores played an important role for accommodating gold particles and chemisorption of the thiols, where smaller pore sizes were found to inhibit the agglomeration/growth of gold particles. The nature of thiol adsorption and the impact of multiple adsorption-desorption cycles on the adsorbents have been studied using electron microscopy, XPS, XRD, GC, and physi/chemiadsorption analyses.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Langmuir
Asunto de la revista:
QUIMICA
Año:
2016
Tipo del documento:
Article
Pais de publicación:
Estados Unidos