Your browser doesn't support javascript.
loading
A Molecular Probe for the Detection of Polar Lipids in Live Cells.
Bader, Christie A; Shandala, Tetyana; Carter, Elizabeth A; Ivask, Angela; Guinan, Taryn; Hickey, Shane M; Werrett, Melissa V; Wright, Phillip J; Simpson, Peter V; Stagni, Stefano; Voelcker, Nicolas H; Lay, Peter A; Massi, Massimiliano; Plush, Sally E; Brooks, Douglas A.
Afiliación
  • Bader CA; School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia, Australia.
  • Shandala T; School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia, Australia.
  • Carter EA; Vibrational Spectroscopy Core Facility, The University of Sydney, Sydney, New South Wales, Australia.
  • Ivask A; Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia.
  • Guinan T; Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia.
  • Hickey SM; School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia, Australia.
  • Werrett MV; Department of Chemistry and Nanochemistry Research Institute, Curtin University, Bentley, Western Australia, Australia.
  • Wright PJ; Department of Chemistry and Nanochemistry Research Institute, Curtin University, Bentley, Western Australia, Australia.
  • Simpson PV; Department of Chemistry and Nanochemistry Research Institute, Curtin University, Bentley, Western Australia, Australia.
  • Stagni S; Department of Industrial Chemistry "Toso Montanari", University of Bologna, Bologna, Italy.
  • Voelcker NH; Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia.
  • Lay PA; Vibrational Spectroscopy Core Facility, The University of Sydney, Sydney, New South Wales, Australia.
  • Massi M; Department of Chemistry and Nanochemistry Research Institute, Curtin University, Bentley, Western Australia, Australia.
  • Plush SE; School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia, Australia.
  • Brooks DA; School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia, Australia.
PLoS One ; 11(8): e0161557, 2016.
Article en En | MEDLINE | ID: mdl-27551717
Lipids have an important role in many aspects of cell biology, including membrane architecture/compartment formation, intracellular traffic, signalling, hormone regulation, inflammation, energy storage and metabolism. Lipid biology is therefore integrally involved in major human diseases, including metabolic disorders, neurodegenerative diseases, obesity, heart disease, immune disorders and cancers, which commonly display altered lipid transport and metabolism. However, the investigation of these important cellular processes has been limited by the availability of specific tools to visualise lipids in live cells. Here we describe the potential for ReZolve-L1™ to localise to intracellular compartments containing polar lipids, such as for example sphingomyelin and phosphatidylethanolamine. In live Drosophila fat body tissue from third instar larvae, ReZolve-L1™ interacted mainly with lipid droplets, including the core region of these organelles. The presence of polar lipids in the core of these lipid droplets was confirmed by Raman mapping and while this was consistent with the distribution of ReZolve-L1™ it did not exclude that the molecular probe might be detecting other lipid species. In response to complete starvation conditions, ReZolve-L1™ was detected mainly in Atg8-GFP autophagic compartments, and showed reduced staining in the lipid droplets of fat body cells. The induction of autophagy by Tor inhibition also increased ReZolve-L1™ detection in autophagic compartments, whereas Atg9 knock down impaired autophagosome formation and altered the distribution of ReZolve-L1™. Finally, during Drosophila metamorphosis fat body tissues showed increased ReZolve-L1™ staining in autophagic compartments at two hours post puparium formation, when compared to earlier developmental time points. We concluded that ReZolve-L1™ is a new live cell imaging tool, which can be used as an imaging reagent for the detection of polar lipids in different intracellular compartments.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sondas Moleculares / Fenómenos Fisiológicos Celulares / Metabolismo de los Lípidos / Lípidos Tipo de estudio: Diagnostic_studies Límite: Animals Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2016 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sondas Moleculares / Fenómenos Fisiológicos Celulares / Metabolismo de los Lípidos / Lípidos Tipo de estudio: Diagnostic_studies Límite: Animals Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2016 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Estados Unidos