Your browser doesn't support javascript.
loading
A Landscape Approach to Invasive Species Management.
Lurgi, Miguel; Wells, Konstans; Kennedy, Malcolm; Campbell, Susan; Fordham, Damien A.
Afiliación
  • Lurgi M; The Environment Institute and School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.
  • Wells K; The Environment Institute and School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.
  • Kennedy M; Environmental Futures Research Institute, Griffith University, Brisbane, QLD 4111, Australia.
  • Campbell S; Department of Agriculture and Food, Western Australia, 3 Baron-Hay Ct, South Perth, WA 6151, Australia.
  • Fordham DA; Department of Agriculture and Food, Western Australia, 444 Albany Hwy, Albany, WA 6330, Australia.
PLoS One ; 11(7): e0160417, 2016.
Article en En | MEDLINE | ID: mdl-27471853
Biological invasions are not only a major threat to biodiversity, they also have major impacts on local economies and agricultural production systems. Once established, the connection of local populations into metapopulation networks facilitates dispersal at landscape scales, generating spatial dynamics that can impact the outcome of pest-management actions. Much planning goes into landscape-scale invasive species management. However, effective management requires knowledge on the interplay between metapopulation network topology and management actions. We address this knowledge gap using simulation models to explore the effectiveness of two common management strategies, applied across different extents and according to different rules for selecting target localities in metapopulations with different network topologies. These management actions are: (i) general population reduction, and (ii) reduction of an obligate resource. The reduction of an obligate resource was generally more efficient than population reduction for depleting populations at landscape scales. However, the way in which local populations are selected for management is important when the topology of the metapopulation is heterogeneous in terms of the distribution of connections among local populations. We tested these broad findings using real-world scenarios of European rabbits (Oryctolagus cuniculus) infesting agricultural landscapes in Western Australia. Although management strategies targeting central populations were more effective in simulated heterogeneous metapopulation structures, no difference was observed in real-world metapopulation structures that are highly homogeneous. In large metapopulations with high proximity and connectivity of neighbouring populations, different spatial management strategies yield similar outcomes. Directly considering spatial attributes in pest-management actions will be most important for metapopulation networks with heterogeneously distributed links. Our modelling framework provides a simple approach for identifying the best possible management strategy for invasive species based on metapopulation structure and control capacity. This information can be used by managers trying to devise efficient landscape-oriented management strategies for invasive species and can also generate insights for conservation purposes.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Conservación de los Recursos Naturales / Especies Introducidas Tipo de estudio: Prognostic_studies Límite: Animals País/Región como asunto: Oceania Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2016 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Conservación de los Recursos Naturales / Especies Introducidas Tipo de estudio: Prognostic_studies Límite: Animals País/Región como asunto: Oceania Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2016 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Estados Unidos