Your browser doesn't support javascript.
loading
Interface Engineering for Atomic Layer Deposited Alumina Gate Dielectric on SiGe Substrates.
Zhang, Liangliang; Guo, Yuzheng; Hassan, Vinayak Vishwanath; Tang, Kechao; Foad, Majeed A; Woicik, Joseph C; Pianetta, Piero; Robertson, John; McIntyre, Paul C.
Afiliación
  • Zhang L; Department of Electrical Engineering, Stanford University , Stanford, California 94305, United States.
  • Guo Y; Engineering Department, Cambridge University , Cambridge CB2 1PZ, United Kingdom.
  • Hassan VV; Applied Materials , Santa Clara, California 95054, United States.
  • Tang K; Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States.
  • Foad MA; Applied Materials , Santa Clara, California 95054, United States.
  • Woicik JC; Materials Science and Engineering Laboratory, National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States.
  • Pianetta P; SLAC National Accelerator Center , Menlo Park, California 94025, United States.
  • Robertson J; Engineering Department, Cambridge University , Cambridge CB2 1PZ, United Kingdom.
  • McIntyre PC; Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States.
ACS Appl Mater Interfaces ; 8(29): 19110-8, 2016 Jul 27.
Article en En | MEDLINE | ID: mdl-27345195
Optimization of the interface between high-k dielectrics and SiGe substrates is a challenging topic due to the complexity arising from the coexistence of Si and Ge interfacial oxides. Defective high-k/SiGe interfaces limit future applications of SiGe as a channel material for electronic devices. In this paper, we identify the surface layer structure of as-received SiGe and Al2O3/SiGe structures based on soft and hard X-ray photoelectron spectroscopy. As-received SiGe substrates have native SiOx/GeOx surface layers, where the GeOx-rich layer is beneath a SiOx-rich surface. Silicon oxide regrows on the SiGe surface during Al2O3 atomic layer deposition, and both SiOx and GeOx regrow during forming gas anneal in the presence of a Pt gate metal. The resulting mixed SiOx-GeOx interface layer causes large interface trap densities (Dit) due to distorted Ge-O bonds across the interface. In contrast, we observe that oxygen-scavenging Al top gates decompose the underlying SiOx/GeOx, in a selective fashion, leaving an ultrathin SiOx interfacial layer that exhibits dramatically reduced Dit.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos