Your browser doesn't support javascript.
loading
Mean first-passage times of non-Markovian random walkers in confinement.
Guérin, T; Levernier, N; Bénichou, O; Voituriez, R.
Afiliación
  • Guérin T; Laboratoire Ondes et Matière d'Aquitaine, University of Bordeaux, Unité Mixte de Recherche 5798, CNRS, F-33400 Talence, France.
  • Levernier N; Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Université Pierre et Marie Curie, 4 Place Jussieu, 75005 Paris, France.
  • Bénichou O; Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Université Pierre et Marie Curie, 4 Place Jussieu, 75005 Paris, France.
  • Voituriez R; Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Université Pierre et Marie Curie, 4 Place Jussieu, 75005 Paris, France.
Nature ; 534(7607): 356-9, 2016 06 16.
Article en En | MEDLINE | ID: mdl-27306185
The first-passage time, defined as the time a random walker takes to reach a target point in a confining domain, is a key quantity in the theory of stochastic processes. Its importance comes from its crucial role in quantifying the efficiency of processes as varied as diffusion-limited reactions, target search processes or the spread of diseases. Most methods of determining the properties of first-passage time in confined domains have been limited to Markovian (memoryless) processes. However, as soon as the random walker interacts with its environment, memory effects cannot be neglected: that is, the future motion of the random walker does not depend only on its current position, but also on its past trajectory. Examples of non-Markovian dynamics include single-file diffusion in narrow channels, or the motion of a tracer particle either attached to a polymeric chain or diffusing in simple or complex fluids such as nematics, dense soft colloids or viscoelastic solutions. Here we introduce an analytical approach to calculate, in the limit of a large confining volume, the mean first-passage time of a Gaussian non-Markovian random walker to a target. The non-Markovian features of the dynamics are encompassed by determining the statistical properties of the fictitious trajectory that the random walker would follow after the first-passage event takes place, which are shown to govern the first-passage time kinetics. This analysis is applicable to a broad range of stochastic processes, which may be correlated at long times. Our theoretical predictions are confirmed by numerical simulations for several examples of non-Markovian processes, including the case of fractional Brownian motion in one and higher dimensions. These results reveal, on the basis of Gaussian processes, the importance of memory effects in first-passage statistics of non-Markovian random walkers in confinement.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Clinical_trials Idioma: En Revista: Nature Año: 2016 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Clinical_trials Idioma: En Revista: Nature Año: 2016 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Reino Unido